

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2011 2. REPORT TYPE

3. DATES COVERED
 00-11-2011 to 00-12-2011

4. TITLE AND SUBTITLE
CrossTalk: The Journal of Defense Software Engineering. Volume 24,
Number 6. November/December 2011

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

40

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CrossTalk—November/December 2011

CONTENTS CrossTalk
OUSD(AT&L) Stephen P. Welby
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Advisor Kasey Thompson
Article Coordinator Lynne Wade
Managing Director Brent Baxter
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-775-5555
E-mail stsc.customerservice@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the Under Secretary of Defense for Acquisition,
Technology and Logistics (OUSD(AT&L)); U.S. Navy (USN); U.S.
Air Force (USAF); and the U.S. Department of Homeland Defense
(DHS). USD(AT&L) co-sponsor: Deputy Assistant Secretary of
Defense for Systems Engineering. USN co-sponsor: Naval Air
Systems Command. USAF co-sponsor: Ogden-ALC 309 SMXG.
DHS co-sponsor: National Cyber Security Division in the National
Protection and Program Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

Netcentric Proxies for On-Orbit Sensors
Proxies can provide support for security, policy enforcement, reliability, media-
tion, power, performance, and operational management. Proxies can also support
information assurance by providing a means to enforce the separation of system
components based on security policy and practices.
by Craig A. Lee and Samuel D. Gasster

Give the Stakeholders What They Want: Design Peer Reviews the
ATAM Style
Looking at the results of many past ATAM evaluations, it becomes apparent that
some mechanism is needed to better guide the architecture design process.
Many ATAM evaluations show major issues with the system that could have
been avoided with the right design approach.
by Felix Bachmann

Software Architecture: Theory and Practice
There is often a gap between widely accepted software engineering theory and
practice. This is also true for the concept of software architecture. While the con-
cept of software architecture has been in existence for quite some time, there is
still a great deal of confusion over just what software architecture actually is.
by Michael Tarullo

Utilizing Design of Experiments to Reduce IT System Testing Cost
Utilizing Orthogonal Arrays (OA) for system and software testing will significantly
reduce cost, schedule and risk. For the aerospace and defense industries, OA
testing will help address the current environment of tighter budgets and schedules
while ensuring end users promised performance.
by Madhav S. Phadke and Kedar M. Phadke

Defect Management Using Depth of Inspection and the Inspection
Performance Metric
Advancement in fundamental engineering aspects of software development en-
ables IT enterprises to develop a more cost effective and better quality product
through aptly organized defect management strategies.
by T.R. Gopalakrishnan Nair and Suma. V.

Free and Open Source Software Use: Benefits and
Compliance Obligations
Many systems developed for and deployed by the U.S. government now use
Free and Open Source Software (FOSS). But FOSS use comes with potential
license obligations. Essential compliance activities include identification of FOSS
used in products along with communication of a FOSS bill of materials; review
and approval of planned FOSS use; and satisfaction of license obligations.
by Philip Koltun

Deployment Optimization for Embedded Flight Avionics Systems
Intelligent algorithms can be used to refine system deployments to reduce sys-
tem cost and resource requirements, such as memory and processor utilization.
by Brian Dougherty, Douglas C. Schmidt, Jules White, Russell Kegley,
and Jonathan Preston

8

4

11

16

22

28

31

Publisher’s Choice

Departments

Cover Design by
Kent Bingham

 3 From the Publisher

 38 Upcoming Events

 39 BackTalk

mailto:stsc.customerservice@hill.af.mil
http://www.crosstalkonline.org
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines
mailto:webmaster@luminpublishing.com

CrossTalk—November/December 2011 3

 FROM THE Publisher

CrossTalk would like to thank
309 SMXG for sponsoring this issue.

The Publisher’s Choice Issue

It was an absolute pleasure to create this special,
“Publisher’s Choice” issue. By selecting this theme, we have
the unique opportunity at CrossTalk to publish some
phenomenal articles that have been waiting far too long to
be published. One often-overlooked difficulty in publishing is
that so many great articles are received; yet we do not have
enough space to share them all. This issue has given us the
chance to go back and revisit the “best of the rest” that have
yet to be in print from all realms of the software engineering
field.

I would also like to take this opportunity to give special
thanks to all the wonderful authors who support CrossTalk.
There are so many great authors who dedicate countless
hours of time and effort in providing us with such high quality
content we see in each issue. To all of you who have taken
the time to submit your work to us, for no other compensation
than our gratitude, we give you our sincere thanks. Further-
more, all of us here at CrossTalk would like to sincerely
thank our readership! We exist to serve your needs. We en-
courage all of you to write to us with suggestions for themes,
layout and design ideas, letters to the editor, and any other
comments you may have so that we can continue to improve
and deliver the best issues possible.

We begin this issue with an article that has been waiting far
too long to be published. Craig A. Lee and Samuel D. Gasster
share their insights into the use of proxies to incorporate
on-orbit sensors into netcentric environments in Netcentric
Proxies for On-Orbit Sensors. Next, Felix Bachmann gives
us an interesting analysis as to how major system issues can
be avoided by incorporating ATAM style design peer reviews
in Give the Stakeholders What They Want: Design Peer
Reviews the ATAM Style.

Michael Tarullo shares his knowledge in bridging the gap
between theory and practice as to how sound software archi-
tectures can be produced consistently and practically in Soft-
ware Architecture Theory and Practice. Madhav S. Phadke
and Kedar M. Phadke tackle the problem of massive cost and
market delays of technology due to testing by exploring the

benefits of using Orthogonal Arrays for generating test plans
in IT systems. The methodology and results presented in their
article, Utilizing Design of Experiments to Reduce IT System
Testing Cost, may indicate that a better methodology may be
on the horizon.

T. R. Gopalakrishnan Nair and Suma. V give us an in-depth
look at how advancements in software engineering practices
enables the development of more cost effective and quality
products through advanced defect management strategies
in Defect Management Using Depth of Inspecting and the
Inspection Performance Metric. Philip Koltun shares his
thoughts on the benefits and constraints of Free and open
Source Software, as well as the many resources available for
optimal utilization in Free and Open Source Software Use:
Benefits and Compliance Obligations.

To conclude the issue, we are featuring the article Deploy-
ment Optimizing for Embedded Flight Avionics Systems, a
collaborative work by five esteemed authors describing the
benefits of intelligent algorithms to reduce cost and resource
requirements in refined system developments. As always, we
have included a humorous yet insightful BackTalk entitled
Geek Mystique by Kasey Thompson.

To the authors, we work diligently to share your ideas with
our readers and truly appreciate all of your time and effort in
sharing this valuable information to the software community.
To our readers, thank you for your continued support and
hope that we continue to exceed expectations by publishing
the highest quality articles.

Justin Hill
Publisher

PUBLISHER’S CHOICE

4 CrossTalk—November/December 2011

1 Introduction

With the growing influence of netcentricity, there is a desire in
the space community to apply it to all system elements. Netcen-
tricity entails information and services that can be discovered
through a standardized messaging protocol and used by any
person or system with the right authentication and authorization.
Such netcentric operations are commonly supported through
some type of SOA using the appropriate vocabularies, metadata
schemas, and ontologies. When properly implemented, this ap-
proach can provide much better system extensibility and interop-
erability, and help avoid stove-piped systems and vendor lock-in.

However, not all system elements, such as on-orbit sensors,
are amenable to direct exposure in a netcentric system. Since
there is a fundamental trade-off between performance and flex-
ibility, any system that must operate in a specialized, resource-
constrained environment may not be able to fully support the
requirements for netcentric communication and interaction.
Furthermore, sets of on-orbit sensors may be part of a larger
system that must be managed as a whole. For instance, any
single on-orbit sensor may be on a vehicle with other sensors
that interact and share local resources. Any single sensor could
also reside on a module that is part of a fractionated cluster in
which various modules are sharing resources [1]. Each vehicle
could be in a constellation of vehicles that must be managed as
a whole at some level.

Hence, in this paper, we will investigate the use of netcen-
tric proxies to make on-orbit sensors available in a general

This paper investigates the use of proxies to incorporate on-orbit sensors
into netcentric environments. Proxies can provide a natural system inter-
face that observes all of the tenets of netcentricity. Proxies can provide
support for security, policy enforcement, reliability, mediation, power,
performance, and operational management. Proxies can also support
information assurance by providing a means to enforce the separation of
system components based on security policy and practices. Proxies could
even be used to determine the “personality” or “look and feel” of how on-
orbit resources are exposed to external clients.

service-oriented architecture, while transparently managing
the constrained bandwidth, latency, orbital connectivity, and
functional characteristics in an intelligent manner. That is to say,
the netcentric proxy can actually expose the control and data of
individual sensors to external users, but it can also expose an
abstraction or higher-level interface to the sensor that is more
appropriate and simpler for external users. We also note that
netcentric proxies can also be used to virtualize on-orbit sen-
sors, since users would not have to communicate with a specific
hardware device at a fixed address, but could communicate
through any instance of the appropriate proxy.

Craig A. Lee, The Aerospace Corporation
Samuel D. Gasster, The Aerospace Corporation

Netcentric
Proxies for
On-Orbit
Sensors

Figure 1. A Notional Satellite Gateway Proxy Architecture

 2 Proxies for On-Orbit Sensors
As noted already, not all system elements are suitable to a

netcentric SOA environment. On-orbit sensors operate in a
highly constrained environment. On-board power is limited, com-
munication is through highly specialized radio frequency (RF)
and optical links, connectivity can be intermittent, and unique
operation and usage policies are strictly enforced. On-orbit sen-
sors, and their data, may also be classified at a higher level than
other system components. The appropriate protections should
be in place as data moves from the space segment, through the
space-to-ground link, and into the ground segment.

For all of these reasons, directly incorporating on-orbit sen-
sors in a netcentric SOA would be very problematic. SOAs typi-
cally require a common transport layer for communication (such
as TCP/IP), services that “come and go” could cause disruption
for clients, and an on-board sensor is probably not the place
to enforce policy across competing requests from a poten-
tially large number of clients. To deal with any of these issues
on-board would require more on-board computing and power
demand just to do “housekeeping”.

It would be possible, however, to indirectly incorporate on-
orbit sensors into a netcentric SOA by making them “available”
through one or more gateway proxies. Figure 1 illustrates how
such gateway proxies could be used to do this. Here a gateway
proxy provides one or more services using a terrestrial SOA. This
proxy is also connected to a satellite communication system that
has the physical uplinks to vehicles and their sensors. These
uplinks provide connectivity to multiple vehicles, each of which
may have multiple sensors.

PUBLISHER’S CHOICE

CrossTalk—November/December 2011 5

With this notional architecture, many issues and capabilities can
be addressed, which we discuss in the following subsections.

2.1 Protocol Conversions
Proxies are a natural place to do protocol conversions be-

tween terrestrial networks and on-orbit vehicles since they are,
by definition, in between the two. (This is called mediation in the
parlance of netcentricity.) While work has been done in running
common network protocols, such as TCP/IP, over delay tolerant
networks, i.e., on an interplanetary scale, this will not be com-
mon. Existing systems will use unique, specialized communica-
tion and interaction protocols that are very different from those
used in SOAs.

2.2 Addressability of Individual Sensors
In networks and SOAs, being able to address and send

a message to specific recipients is a fundamental capabil-
ity. Names and addresses of vehicles and sensors could be
published to the registry that external systems are allowed to
discover and use. Behind the gateway, however, these names
and addresses could be mapped to whatever scheme makes the
most sense internally.

2.3 Higher Level System Services
We also note that the externally visible names and addresses

could, in fact, represent not just individual sensors, but also ag-
gregate functionality provided by the sensors, vehicles, clusters,
or an entire constellation. The use of gateway proxies would
allow a range of services to be exposed on the terrestrial SOA—
from individual sensors to higher level, aggregate services that
define the apparent “behavior” or “personality” of the entire sat-
ellite system. As an example, a user may want infrared (IR) sur-
veillance data with specific performance parameters. They could
submit a request to an IR surveillance service that determines
how best to satisfy this request with the available resources. The
user could get an initial report describing how the request will
be met, and if adequate, the user could resubmit the request for
the actual data.

2.4 Managing Orbital Connectivity
Depending on the presence of cross-links in a particular

satellite constellation, vehicles and their sensors may only have
periodic connectivity to the ground. A gateway proxy could
provide a continuous presence for the sensors, even if they are
not over a ground station, thus providing a more robust client
interface and experience.

2.5 Managing Reliability
Beyond just orbital connectivity, proxies could manage all

aspects of the externally perceived reliability for sensors and
vehicles. If the gateway can communicate with more than one
ground station, it can reroute traffic if one ground station fails,
or if the network link fails. In the event of a failure somewhere in
the system the proxies could, at a minimum, provide information
to clients about the failure. It can also attempt to transparently
shield the client from failure by looking at alternate ways to
satisfy service requests.

2.6 Power Demand
Some client service requests will require the expenditure of

power onboard one or more satellites. The aggregate of client
requests may, in fact, exceed the available on-board power.
Hence, the gateway proxy would be where the best location to
enforce energy policies could be enforced. By examining the cli-
ent request stream, the proxy could rearrange or delay requests,
when possible, to avoid excessive power demands.

2.7 Security and Information Assurance
Gateway proxies are also the natural “gatekeepers” for the

on-orbit assets. They can fully participate in the SOA’s security
mechanisms and support information assurance. Clients must
authenticate to the gateway to establish their identity and be
authorized to request services and data from the satellites. Ac-
cess is based on the client’s role within mission operations and
pre-defined usage policies. Proxies can also provide encryption,
checksums, and other methods for monitoring data integrity.

2.8 Operational Policy Enforcement
Beyond issues of power management, security and informa-

tion assurance, gateway proxies are also the place where all op-
erational policies concerning on-orbit assets could be enforced.
For example, proxies could enforce an operational policy of “do
not slew the bore-sight of the sensor across the disk of the sun,”
or “do not exceed a given power/duty cycle,” etc. Clearly prox-
ies could be the policy enforcement point as part of an overall
resource management and scheduling system.

http://www.usajobs.gov
http://www.dhs.gov

6 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

2.9 Cluster and Constellation Configuration
Multiple sensors, modules, and vehicles may not be indepen-

dent of each other and may have to be managed as a unified
system. All sensors on a particular vehicle are related, since
they must share common resources, e.g., power, communication
bandwidth, etc. They may also be related through configurable
functional attributes that are sensor-specific, e.g., band, filtering,
etc. Hence, while clients may want to interact with individual
sensors or with higher-level aggregate services, the proxy may
have to manage the sensors as a group. (Essentially, this is
enforcing configuration policy.)

Figure 2. Gateway Proxy to Satellite Cluster Configuration

Figure 3. Satellite Gateway Proxies in a Peer-to-Peer Configuration

Likewise, sets of vehicles may have to be managed as a whole.
Vehicles could be in a leader-follower configuration, a group or
cluster of satellites, or in a multiple plane constellation. A specific
example of satellite clusters is the DARPA System F6 program
[2]. The idea behind F6 is to develop satellite architectures con-
sisting of “future, flexible, fast, fractionated, free-flying spacecraft
united by information exchange.” This is illustrated in Figure 2,

where a set of vehicles is in cluster flight configuration and com-
municating through their own RF cross-links. Each vehicle is a
fractionated module with a specific set of functions provided for
the cluster, i.e., the entire satellite system. When under attack,
such modules can disperse and reform the cluster at a later time
when it is safe to do so. If any one module fails, its functions could
be taken over by another until a replacement module is available.
Proxies would be very useful for interfacing such fractionated
satellite architectures with a terrestrial service architecture.

2.10 Peer-To-Peer (P2P) Network of Gateway Proxies
In the discussion so far, we have presented the gateway

proxy as if it were a single point of entry. The gateway could, in
fact, have more than one “point of entry.” There could be a P2P
network of gateway proxies, as illustrated in Figure 3. Clients
could contact the closest peer when requesting data or services
from the on-orbit assets. (See “Terrestrial Data Archives.”) The
gateway peers could also provide redundancy and continuity of
operations, i.e., reliability. The peers could be physically separat-
ed from one another such that if one peer crashes or is off-line
for any reason, then access to the on-orbit assets is still possible
by re-routing through another peer. One could also deploy a
peer downrange on the battlefield to serve as the battlespace
local point of contact.

2.11 Terrestrial Data Archives
Satellite sensors can produce tremendous amounts of data that

must be served to clients and archived for future use. Such archives
may be behind the gateway proxies or anywhere on the terrestrial
SOA. If the archive is on the terrestrial SOA, the gateway could at
least act as the agent that provides data to the archive.

If the archive is behind the gateway, however, then the gate-
way can serve as the gateway to the data archive as well. That
is to say, the gateway could enforce data policy by managing
access to the data, replicating data to different sites for faster
access and reliability, and even providing data virtualization
services. When a client requests satellite data from the gate-
way, it first looks to see if the requested data is available in the
archive. If the requested data products are not available, then the
gateway could actually schedule the on-orbit sensor to collect
the raw data necessary to satisfy the client request.

2.12 Managing a Larger Sensor Network
Finally, we note that the on-orbit sensors could actually be

part of a larger sensor network supplying data and information
to a wide set of consumers. Consumers may want to interact
with all of their data providers through a uniform model and
interface to improve ease of use. On-orbit sensors may be only
one of many data providers. Such an interface could define uni-
form ways for requesting data, specifying when the sensor pro-
duces data, and how the data is reported. One possible standard
relevant to such sensor networks is the Sensor Web Enablement
standard from the Open Geospatial Consortium [3].

3 Summary, Discussion, and Future Work
We have presented the concept of using proxies to manage

the exposure of on-orbit vehicles and sensors in netcentric sys-

CrossTalk—November/December 2011 7

PUBLISHER’S CHOICE

tems. Building on established concepts in computer networks
and distributed systems, we argue that proxies on SOA—as an
intermediary between clients and on-orbit assets—provide a
mechanism to implement a wide range of important and useful
capabilities. These capabilities include information assurance,
policy enforcement, reliability, mediation, power, performance,
and operational management. This can also be extended to
managing how the “personality” or “look and feel” of vehicles
and sensors are presented to external clients.

The concept of netcentric proxies for on-orbit vehicles and
sensors has significant value, but clearly more thorough studies
should be done to evaluate the possible difficulties of imple-
mentation and the actual benefits. For any specific systems, the
general issue of increased latency introduced by a proxy would
have to be evaluated. Also, any implementation in a real-world
satellite system would carry with it any number of conflicting
goals and design compromises. These conflicting goals and de-
sign compromises may have nothing to do with SOAs or proxies,
but may impact their overall effectiveness.

To avoid pitfalls, it is clear that prototyping programs should
be undertaken that start small and incrementally build capabili-
ties for evaluation. The capabilities identified could be parti-
tioned into phases that build on one another. Such prototypes
could possibly leverage the Netcentric Core Enterprise Services
[4] that are already being developed by the Defense Information
Standards Agency (DISA). In addition to the engagement with
DISA, the notion of netcentric proxies could also be promoted
in defense contractor and community organizations, such as
the Network-Centric Operations Industry Consortium [5], the
Ground System Architectures Workshop [6], and the Federal
SOA Community of Practice [7]. This would facilitate “closing the
loop” among user/government requirements, standards organi-
zations, and the vendor community.

Acknowledgments:
This work was supported by The Aerospace Corporation

through the Innovation Grant Program of the Research and
Program Development Office.

Dr. Craig A. Lee is a Senior Scientist at The Aerospace
Corporation and current serving as President of the Open
Grid Forum. Dr. Lee has worked in the area of parallel and
distributed computing for the last 30 years. He has con-
ducted DARPA and NSF sponsored research and served as
a review panelist for the NSF, NASA, DOE, and INRIA. He
has published over 60 technical works and sits on the edito-
rial board of two journals. Dr. Lee holds a Ph.D. in Computer
Science from the University of California, Irvine.

Computer Systems Research Department
The Aerospace Corporation, P.O. Box 92957
El Segundo, CA 90009
E-mail: lee@aero.org

Dr. Samuel Gasster is a Senior Scientist at The Aero-
space Corporation, where he specializes in the application
of high performance computing technology for scientific and
remote-sensing applications, data-modeling and data-man-
agement system development, and systems and software
engineering. He has worked at Aerospace for over 20 years
and has supported a wide range of defense and civilian
programs and agencies, including the USAF, NASA, NOAA,
and DARPA. He currently supports the DARPA System F6
Program. His research interests include Quantum Informa-
tion Science and Technology, new approaches to space
mission systems engineering and complex systems. He has
taught remote sensing and computer science courses at
UCLA Extension and the Aerospace Institute. He holds a
Ph.D. in physics from the University of California, Berkeley
and an S.B. in mathematics from MIT.

Computer Systems Research Department
The Aerospace Corporation, P.O. Box 92957
El Segundo, CA 90009
E-mail: gasster@aero.org

ABOUT THE AUTHORS

1. O. Brown and P. Eremenko. The value proposition for fractionated space architectures. AIAA Space 2006, (
 AIAA-2006-7506), 2006.
2. DARPA. System F6. <http://www.darpa.mil/TTO/ Programs/sf6.htm>.
3. The Open Geospatial Consortium. SensorWeb Enablement.
 < http://www.opengeospatial.org/projects/groups/sensorweb>.
4. Defense Information Systems Agency. Net-Centric Enterprise Services. < http://www.disa.mil/nces>.
5. The Network-Centric Operations Industry Consortium. < http://www.ncoic.org>.
6. Ground System Architectures Workshop. < http://sunset.usc.edu/GSAW>.
7. Federal SOA Community of Practice. < http://semanticommunity.wik.is/Federal_SOA_Community_of_Practice>.

REFERENCES

mailto:lee@aero.org
mailto:gasster@aero.org
http://www.darpa.mil/TTO/Programs/sf6.htm
http://www.opengeospatial.org/projects/groups/sensorweb
http://www.disa.mil/nces
http://www.ncoic.org
http://sunset.usc.edu/GSAW
http://semanticommunity.wik.is/Federal_SOA_Community_of_Practice

8 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

In a recent project, SEI guided architects of an organization
through the design of a major system for the financial market.
We used a Quality Attribute Workshop (QAW) to generate the
first set of important quality attribute scenarios that interested
stakeholders. The design was created utilizing the SEI’s At-
tribute Driven Design method (ADD) [2] in which the generated
scenarios were transformed into an architecture design. On a
bi-weekly basis, ATAM style peer reviews were conducted with
the architects to ensure that the design actually addressed the
requirements. This combination of methods achieved some
interesting results for this project:

* First, an architecture evaluation using ATAM conducted at
the end of the architecture design process was completed in
half the time than comparable ATAMs done on large software
systems and did not uncover any unexpected risks. In short, the
evaluation showed that the system indeed provides what the
stakeholders want.

* Secondly, the ADD method combined with the ATAM style
peer review made the architecture design tasks transparent for
both project management and the stakeholders. Instead of try-
ing to explain architecture diagrams, scenarios (from the QAW)
with their associated risks (from the ATAM style peer review)
were reviewed on a biweekly basis. Seeing the risks being
mitigated over time convinced the stakeholders that the project
was on the right track.

* Finally, the architecture team never had to be pushed to doc-
ument their architecture. Just the fact that the architects had to
prepare for the biweekly peer reviews was sufficient incentive to
write down how the current design would fulfill the stakeholder
scenarios. Basically, the architecture documentation was created
continuously during the design with no additional effort.

Give the Stakeholders
What They Want:
Design Peer Reviews
the ATAM Style
Felix Bachmann, Software Engineering Institute

Abstract. The Architecture Tradeoff Analysis Method® (ATAM®) is used
to evaluate the architecture of a software intensive system to determine if
it meets the organization’s business and mission goals [1]. ATAM is typi-
cally applied at the end of the architecture design process. Looking at the
results of many past ATAM evaluations, it becomes apparent that some
mechanism is needed to better guide the architecture design process.
Many ATAM evaluations show major issues with the system that could
have been avoided with the right design approach.

Quality Attribute Scenarios
Properly designing software architecture means that, aside

from the necessary functionality, the system will meet the
required quality attribute requirements such as modifiability,
interoperability, and security, to name just a few [3]. In fact, it is
the system’s architecture that determines if the system meets
the quality attribute requirements. That is why SEI created archi-
tecture methods like QAW [4] and ADD [5], as well as the ATAM
[2], that are centered on utilizing quality attribute scenarios as a
more precise way of specifying the quality attribute requirements
a system has to fulfill.

During a QAW, the stakeholders articulate and prioritize quality
attribute scenarios based on their business and mission goals. It
is the architect’s job to then take those scenarios and transform
them into a design that will support these goals. This is exactly
what SEI’s ADD method is used for. Performing an ATAM at
the end of the design process involves reviewing the quality
attribute scenarios again, verifying with the stakeholders that the
scenarios are still valid, and then verifying that the architecture
supports these scenarios.

This sounds like a valid process, but a surprising number of
ATAMs reveal that the architecture does not fulfill the require-
ments. Independent of the reasons why, in many cases there is
no time in the schedule to actually go back and redesign the ar-
chitecture. The only remaining alternatives are to either end the
project or to move forward with a system designed with inherent
risk hoping that nothing bad will happen.

ATAM Style Design Peer Reviews
During the design process there have to be some checkpoints

that allow verification that the design will fulfill the stakeholder’s
expectation. Conducting peer reviews is a common method for
doing so. As the ATAM results show, in many cases those peer
reviews do not ensure that the appropriate system is devel-
oped. To overcome this weakness we introduced a peer review
process that utilizes the same techniques ATAM evaluation uses.
This makes the design process similar to Kent Beck’s Test Driv-
en Development (TDD) [6]. In a test-driven development, tests
are created first, then the part of the system that is executed by
the test is developed and then the tests are run. If a test fails,
the developed code is corrected and the test is run again. These
steps are repeated until all tests pass.

In an architecture design, the tests are actually the quality
attribute scenarios. The architecture design must fulfill those
scenarios to be accepted by the stakeholders as a good design.
As was stated above, the scenarios are already defined during a
QAW before the architecture is designed. The architects ensure
that the current design is checked in a periodic fashion to see
if the scenarios are continuing to be fulfilled. Running tests on
the current design means performing a peer review using the
techniques of the ATAM.

The timing and the scope of the peer review strongly depend
on system complexity and the quality attribute scenarios. In our
case, we decided to conduct an ATAM style design peer review
every two weeks. We allocated three hours for the review and

CrossTalk—November/December 2011 9

PUBLISHER’S CHOICE

we were able to review two scenarios during those three hours.
At the beginning of a two-week cycle, the architects decided on
the two scenarios to focus on for that cycle. The architects then
had two weeks to design the system that would support those
two scenarios. During that time period, the architects had to
produce a documented design including evidence that the de-
sign was appropriate and that past scenarios, already checked
in earlier reviews, were not now being violated by the updated
design. At the end of the cycle, a peer review was conducted
with ATAM-trained SEI architects.

Steps of the ATAM Style Peer Review
An ATAM-style peer review is done by building a review team

that consists of the system’s architecture team and two other
architects to act as reviewers. In our case we used architects from
SEI, but any architect, not involved in the project and knowledge-
able in the ATAM method would be able to do the review.

It is the responsibility of the architecture team to provide all
necessary documentation to reviewers at the beginning of the
review, explaining why the chosen scenarios are well supported.
Typically the architecture team leader is the main speaker, but
the other architects also provide information whenever neces-
sary. At least one architect needs to have a good understanding
of what the stakeholders actually meant when they created the
scenarios. This knowledge helps to identify when a scenario was
written ambiguously.

The reviewers’ main responsibility is to ask questions that
help the architecture team uncover issues in their design. One
of the reviewers acts as a facilitator, responsible for guiding
the whole review team through the review process. The other
reviewer acts as a scribe, writing down the approaches, risks
and the to-do items.

Let us have a more detailed look into the ATAM style design
peer review process.

Step 1: Select the scenario to analyze.
A design peer review needs to have a clear focus. Instead of

analyzing the whole architecture—which could be a very tedious
task—the review only needs to uncover the risks associated with
one scenario. The peer review starts by selecting the scenario
to review. This is usually one of the scenarios selected at the
beginning of the two-week design cycle, but could also be any
other scenario. It often happens that, during the design process,
a scenario will get refined into multiple, more detailed scenarios
addressing different aspects of the requirements. For example,
the starting scenario could have been one stating that the system
has to be available 24 hours, seven days per week. During the
design process, the architects may have discovered that hard-
ware failures and software failures need to be treated differently.
Therefore, the availability scenario might have been broken into
two scenarios, each addressing different aspects of availability.

As a rule of thumb, we saw that every scenario created by
stakeholders during a QAW was typically divided into three to
five more specific scenarios.

Step 2: Elicit the architecture approaches.
An architecture approach is a pattern or tactic [2] used in the

architecture to support the chosen quality attribute scenario.
On one hand, eliciting the approaches allows reviewers to very
quickly see if there is sufficient support for that scenario. On the
other hand, it also allows the reviewers to ask questions about
the possibly negative consequences the approach has on other
scenarios. The scribe writes down the approaches including the
rationale on why they were chosen.

Step 3: Analyze architecture approaches.
The analysis of the architecture approaches is done as a ques-

tion and answer session where the reviewers ask questions about
the solution and the architects answer the questions by pointing
to the parts of the architecture documentation that provide the
answers. Here are clues about how to treat the answers:

* If a question cannot be answered, the scribe writes it down
as a risk.

* If the provided answer is problematic because it might vio-
late some other scenarios, it is written down as a risk.

* If the answer is that this is still an open issue, it is written
down as a to-do item.

* If the answer satisfies the reviewers, it is written down as
evidence with a pointer to the supporting documentation if it
was not already done. The scribe also notes every piece of
documentation, such as structural diagrams (module views,
component and connector views, deployments, views, etc.) or
behavioral diagrams (sequence charts, state diagrams, etc.) that
was used during the review of the scenario.

Step 4: Review results.
Step 3 usually results in a list of five to 10 risks per scenario.

This may sound like a big number, but this level is normal when
the scenario is reviewed for the first time. It also means that
some sort of redesign has to follow. In Step 4 the architecture
team and the reviewers analyze the captured list of risks as well
as to-do items and decide on appropriate actions. The best case
would be that the scenario is solved and no further action is re-
quired. More commonly, the appropriate actions are to adjust the
architecture, to build a prototype to provide better insights, or
have a discussion with the stakeholders because the scenario
might be impossible to achieve.

After Step 4, the architecture team should have a clear view
about what to do next with the reviewed scenarios.

A design peer review needs to have a
clear focus. Instead of analyzing the
whole architecture—which could be
a very tedious task—the review only
needs to uncover the risks associated
with one scenario.

10 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

Conclusion
In our experience, performing ATAM style design peer reviews

every second week was never seen as a burden by the archi-
tects. They were actually looking forward to the next review
because the reviews provided them with valuable input and they
could see progress when the list of risks and the to-do list be-
came smaller and smaller over time. The architects also saw the
value of early feedback. Even if they went down a wrong path,
the most time they would lose was two weeks.

These benefits are apparent, but there were other positive
side effects. The peer reviews trained the architects to think in
terms of uncovering risks and mitigating them. This enabled the
architects to have more productive discussions with stakehold-
ers, such as the project manager or the program office about
their requirements using scenarios with their attached risks.
When product development goes into the architecture design
phase, outsiders often perceive that nothing is happening even
if the architects show diagrams and pictures. For an outsider
those pictures do not mean anything, but talking about scenari-
os and risks makes the whole architecture design process trans-
parent. Even if you do not understand what those architecture
diagrams mean, you can clearly track risks and see progress as
those risks are slowly being mitigated.

We also did an ATAM at the end of the architecture design,
just to make sure that nothing was missed. The ATAM was done
by a completely independent SEI team that was not involved in
the design. Since the architecture team was able to provide to
the ATAM team all the artifacts that are usually created during
Phase 1 of the ATAM, the ATAM team could focus on Phase
2 only. This expedited verification with the stakeholders that
indeed the architecture fulfilled their needs. The result was that
the ATAM did not find any unknown or unaddressed risk. Basi-
cally, the ATAM acknowledged that the stakeholders would get
the system they want.

It is also noteworthy that in the project plans there was never
a “documentation” task. The fact that the architects had to de-
liver proof every two weeks automatically led them to document
their design immediately. They knew that if an important concept
was not written down it would end up as a risk.

Disclaimer:
Architecture Tradeoff Analysis Method® and ATAM® are

registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

Felix H. Bachmann is a Senior Mem-
ber of the Technical Staff at the Software
Engineering Institute (SEI) working in the
Architecture Centric Engineering Initiative.
He is co-author of the Attribute-Driven De-
sign Method, a contributor to and instructor
for the ATAM Evaluator Training, and a co-
author of Documenting Software Architec-
tures: Views and Beyond.

Before joining SEI he was a software
engineer at the Robert Bosch GmbH in
Corporate Research, where he worked with
software development departments to ad-
dress the issues of software engineering in
small and large embedded systems.

Software Engineering Institute
Felix Bachmann
4500 5th Avenue
Pittsburgh, PA 15213
Phone: (412) 268-6194
Fax: (412) 268-6257
E-mail: fb@sei.cmu.edu

ABOUT THE AUTHORS

1. Clements, P.; Kazman, R.; Klein, M. Evaluating Software Architectures:
 Methods and Case Studies Addison Wesley, 2002.
 Engineering Institute, Carnegie Mellon University, 2002.
2. Bass, L., Clements, P., and Kazman, R. 2003. Software Architecture in Practice,
 Second Edition. Boston, MA: Addison-Wesley.
3. Bachmann, F.; Bass, L.; Klein, M. Illuminating the Fundamental Contributors to Software
 Architecture Quality (CMU/SEI-2002-TR-025). Pittsburgh, PA: Software Engineering
 Institute, Carnegie Mellon University, 2002.
4. Barbacci, M.; Ellison, R.; Lattanze, A.; Stafford, J.; Weinstock, C.; Wood, W. Quality
 Attribute Workshops (QAWs), Third Edition (CMU/SEI-2003-TR-016). Pittsburgh, PA:
 Software Engineering Institute, Carnegie Mellon University, 2003.
5. Wojcik, R.; Bachmann, F.; Bass, L.; Clements, P.; Merson, P.; Nord, R.; Wood, W. Attribute
 Driven Design (ADD), Version 2.0 (CMU/SEI-2006-TR-023). Pittsburgh, PA: Software
 Engineering Institute, Carnegie Mellon University, 2006.
6. Beck, K. Test-Driven Development: By Example. Addison-Wesley, November 2002.

REFERENCES

Performing ATAM style design peer reviews every
second week was never seen as a burden by the
architects. They were actually looking forward
to the next review because the reviews provided
them with valuable input and they could see prog-
ress when the list of risks and the to-do list be-
came smaller and smaller over time.

mailto:fb@sei.cmu.edu

CrossTalk—November/December 2011 11

PUBLISHER’S CHOICE

Software
Architecture

Introduction
In many fields, there is often a gap between theory and

practice. Software engineering is no different. Misconceptions
about software architecture, particularly by practitioners, make
it difficult to communicate software architectures effectively.
SEI’s website [1] demonstrates the astounding diversity that ex-
ists with respect to the definition of software architecture. This
website lists two modern definitions, eight classical definitions,
18 bibliographical definitions and numerous community defini-
tions. The first three categories indicate a general agreement on
the definition of the term by theoreticians and academicians. It is
the wide variety of definitions held by those in the last category
that is troubling, specifically because they appear to represent
practitioners. And such confusion can make it difficult, if not
impossible, to use the concept in a practical fashion.

This article attempts to show how sound software architec-
tures can be produced quite practically, in a repeatable and
understandable fashion, by adopting a widely held definition for
the concept of software architecture, adopting a model for cre-
ating software architectures, and by using the de-facto standard
software engineering modeling tool, UML (v2.0), to convey a
software architecture.

Theory
Kruchten, et. al. [2] provide an excellent presentation on the

history of software architecture. Their paper traces the develop-
ment of software architecture theory from the time the paper
was published back to its origins and before. Mary Shaw and
David Garlan [3] published one of the earliest books on the
subject. It is fitting that they begin their book with the question,
“What is Software Architecture?”

Both the theory and practice of software architecture must be
rooted in a clearly expressed and universally accepted defini-
tion of the term. What is needed is a definition that succinctly
and cogently expresses the concept of software architecture.
Moreover, such a definition must express the concept in such
a way that it can be used practically. We turn to the myriad of
definitions compiled by SEI to extract the essence of the mean-
ing of software architecture. Many if not most of the definitions
published on the SEI website have three things in common; 1)
organization of a system, 2) components, and 3) relationships.
While there are many other concepts conveyed, it is these three
terms, or synonyms thereof, that persist throughout the defini-
tions provided and are at the core of the theory. As a result,
the definition provided by Bass, et. al. [4], that is, “The software
architecture of a program or computing system is the structure
or structures of the system, which comprise software elements,
the externally visible properties of those elements, and the
relationships among them,” is adopted herein since it contains
each of the three common concepts cited above and comple-
ments the techniques that can be used for creating the software
architectures described below. It is assumed that “structure” and
“elements” in Bass’s definition are synonyms for organization
and components respectively, as used on SEI’s website.

Also needed to build sound, practical software architectures,
is a theoretical model that places software architecture within
the larger context of software design. Such a model is provided
by Mowbray and Malveau [5]. Their Scalability Model (SM)
represents the software design continuum as a series of design
levels, each representing the software under consideration at
a different level of abstraction. Mowbray and Malveau describe
each of these levels thus:

• The global level is concerned with the design issues that
are applicable across all systems (enterprises).

• The enterprise level is focused upon coordination and com-
munication (of systems) within a single organization.

• The system level deals with the coordination and communi-
cation across applications (and libraries) and sets of applica-
tions (and libraries).

• The application level is focused upon the organization of
applications developed to meet a set of user requirements.

• The macro component level is focused on the organization
and development of application frameworks.

• The micro component level is centered on the software
components that solve recurring software problems.

• The classes level is concerned with the development of
reusable objects and classes.

While their model was created to provide the foundation of
their work in Common Object Request Broker Architecture
design patterns, it is most relevant to object-oriented software
development but is certainly abstract enough to be applied to

Theory and Practice
Abstract. There is often a gap between widely accepted software
engineering theory and practice. This is also true for the concept of
software architecture. While the concept of software architecture has
been in existence for quite some time, there is still a great deal of confu-
sion over just what software architecture actually is. Moreover, lack of
a clear understanding of the concept of software architecture makes it ex-
tremely difficult to work with pragmatically. This article attempts to show
how sound software architectures can be produced quite practically and
documented consistently. A definition of software architecture is adopted
and a model for creating software architectures by using the de-facto
standard software engineering modeling tool, UML (v2.0), is introduced.

Michael Tarullo, L-3 Communications

12 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

Figure 1:

other methods of software development as well. In this discus-
sion we will use a modified version of the SM (see Figure 1)
and architectural issues will focus on the global, enterprise and
system levels.

Having established a sound definition of software architecture
and a model for constructing such architectures, the practical
application of these concepts can now be discussed.

Practice
This section will illustrate a process that can be used to build

and graphically document software architectures. A discussion
of the capturing of major architectural decisions is beyond the
scope of this paper. For a discussion of this topic consult the
work of Tyree and Akerman [6]. Also, the textual description of
a software architecture that would be included in a formal soft-
ware architecture document is only briefly mentioned.

This section does discuss the practical application of the modi-
fied SM shown in Figure 1. A practical application of the original
model is provided by Tepfenhart [7]. This paper describes a
rather strict application of UML (v2.0) to several of the concepts
presented by Tepfenhart [7]. The basis for the usage of UML
described here can be found in several sources [8, 9, 10].

Mowbray and Malveau [5] state that, “One of the key benefits
of architecture is the separation of concerns … the SM sepa-
rates concerns based upon scale of software solutions. The
model clarifies the key levels inherent in software systems and
the problems and solutions available at each level.”

This approach fosters decomposition, a major practice used to
control complexity in large (or any size for that matter) software
systems. The following summarizes how the SM provides a
guideline for the architectural decomposition process. This is
followed by an abstract example of how UML would be used to
document the global, enterprise and system levels.

In the modified SM shown in Figure 1, we treat each level as
a container that holds components that are elements of the next
level above. That is, the global level is a container for enterprise
components, the enterprise level is a container for system com-
ponents, and so on for each level of the model. It is important to
note here that the term component is used throughout in both
a traditional [11] (e.g. software component) and non-traditional
sense. We will examine this again when describing the process
used to document architectures later in this paper.

To decompose a large software system for the purpose of
creating an architectural model, we start with the global level.
The global level architecture is composed of enterprise com-
ponents. Enterprises are the identifiable business units or
organizations whose software will interact to achieve some com-
putational goal. The business unit or organization sponsoring the
software development is identified as well as business partners,
customers, or suppliers—in short any business entity that may
interact with the sponsoring organization.

The enterprise level consists of the organization sponsoring
the software development and is composed of all the systems
that will be employed to achieve the project goals and require-
ments. Systems identified at this level are not confined to just
systems that will be developed as part of the software develop-
ment effort. In-house legacy systems and COTS products, either
existing or that need to be purchased as part of the present ef-
fort, are also identified. In this way no effects from unanticipated
interfaces should occur during detailed design. For each system
that will be developed, the architecture clearly demonstrates col-
laboration with other systems, either under development, already
existing, or with plans to be purchased.

The next step in the process is the decomposition of the
systems to be developed that were identified at the enterprise
level. The components at this architectural level are either sub-
systems, applications or libraries. In UML v2.0 libraries are rep-
resented as artifacts. Here, we choose to represent libraries as
components. Almost invariably, libraries are the manifestation of
components and stereotyping components for the various levels
of the SM is a natural and more than acceptable method of
presentation. Applications are defined as standalone executable
software components while libraries though standalone, rely on
applications for their run-time execution. Libraries may be either
internal or external to applications.

To graphically document a software architecture defined in
this way, we use the UML component diagram. The component
diagram is perfect for representing the architectural elements at
each level of the SM. Furthermore, it is also a perfect compan-
ion to the component-oriented definition adopted here. Since
the components at several levels of the SM are not software
components as defined by the UML, we use stereotypes to
indicate the components at each level. Only the components
at the system level and above are software components in the
sense of the UML definition. We use interfaces, direct connec-

CrossTalk—November/December 2011 13

PUBLISHER’S CHOICE

Figure 2

Figure 3

tions, and delegation connectors to indicate the relationships
between components at all levels. Direct connections are used
to represent interfaces between components that may not be
call level interfaces, such as shared files or non-digital medium.
This is necessary because, as we have seen, not all components
in the model represent software.

Figure 2 illustrates a UML component diagram at the global
level for a software system under consideration. It conveys to
the viewer that the global architecture consists of four enter-
prises. Assume that Enterprise X is the enterprise for which the
software under consideration is being designed. Furthermore,
assume that Enterprise W, Y and Z are not part of the same
organizational unit (corporation, government agency, etc.) as
Enterprise X. This component diagram clearly indicates that
Enterprise X needs some functionality or data provided by
Enterprise Z, and is provided by Enterprise Z through Interface
Z. It also clearly indicates that Enterprise X will provide some
functionality through Interface X that will be used by Enterprise
Y. This component diagram also shows that Enterprise X has a
relationship to Enterprise W through the direct connection XW.
This component diagram shows no relationships among Enter-
prise W, Y and Z. This does not mean that such relationships do
not exist; it only means that such relationships, if indeed they do
exist, are not important to the architectural description of Enter-
prise X, and therefore do not need to be included.

We would now move on to a decomposition of Enterprise X
into its constituent system components. The result of such a
process would be a component diagram for Enterprise X like the
one shown in Figure 3. This diagram conveys to the viewer that
Enterprise X consists of five systems, Systems A, B, C, D and E.
System A provides Interface A that is used by System C. Also,
System B provides Interface B1 and Interface B2 which are used
by System A and System D respectively. System A has a relation-
ship to System E through direct connection AE. The viewer can
also determine that System C is the system within Enterprise X to
which access to Interface X by Enterprise Y is delegated; and that
Enterprise X delegates to System D use of the external Interface
Z that is provided by Enterprise Z. Furthermore, Enterprise X dele-
gates access to Enterprise W to System E via the delegation con-
nection to port Connection XW. It can also be seen that System A
and System C are both providers and users of various interfaces,
while System B is only a provider of interfaces and System D is
only a user of interfaces. But more than this, the viewer knows
exactly which interfaces and connections are provided by which
systems and likewise which interfaces and connections are used.

Next, each system component identified at the enterprise
level would be decomposed into applications and/or libraries.
We will assume that analysis has shown that Systems A, B and
C will be part of a new development project. Furthermore, we
will assume that System D will be a COTS product and System
E is a legacy system that is being retained, unchanged. For this
discussion we will only describe the decomposition of System
A. We also know, from the component diagram for Enterprise X,
the relationships System A has to all the other systems at the
enterprise level and we will discuss these as well.

14 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

Figure 4 shows the decomposition of System A into its
component applications and libraries. This component diagram
shows that system A consists of four applications, Application
A1, A2, A3 and A4 and one library, Library L1. Application A1
has a relationship to two other components that are a part of
System A, that is Application A2 and Library L1. Application
A1 provides Interface A that is used by Application A2. Recall
that one of the system level interfaces provided by System A,
and used by System C, is also Interface A. We say that System
A delegates the implementation of Interface A to Application
A1, as indicated in the diagram by the delegation connection
that connects the external port for Interface A with the provided
interface of Application A1. It should be noted that Interface
A connected to the external port of System A and Interface A
connected to Application A1 are in fact the same interface. Con-
ceptually, one may think of the System A external port connec-
tion for Interface A as the access point to the interface provided
by Application A1. In fact, neither System A nor Application A1
is actually capable of implementation of Interface A. Application
A1 would actually delegate implementation of this interface to a
specific class.

Application A1 also uses Interface L1, the provided interface
of Library L1 through its required interface. Library L1 is an
example of an external library component. Its implementation
would be highly dependent on the programming language used
to write the code for System A (e.g. in C++ on Windows it could
be a Dynamic Link Library, .dll file). The concept of a library as a
component more closely approximates the traditional use of the
term software component used by Lau and Wang [7]. In their
interpretation of the term we would build applications by as-
sembling components, either preexisting or built specifically for
the application. Libraries as components, in the context of the
SM can consist of a single class or multiple classes. The internal
implementation is not significant. From the user of the library’s
point of view, only the interfaces provided are important.

Figure 4

Application A3, like Application A1, also has a required inter-
face that uses Interface L1. We know from the enterprise level
that System A also interfaces to System B through Interface B1.
In Figure 4 we can see that System A delegates this responsi-
bility to Application A3.

Application A4, while having no relationship with any of the
other applications in System A, does have the responsibility of
providing the interface with System E. We can see that System
A has delegated this responsibility to Application A4 by the
delegation connection to the external port Connection AE. This
is an example of a direct connection. The nature of this relation-
ship would be described in the architecture document interfaces
section or in a separate interface design document.

One very important point to note is the relationship of System
A the container to System A the component of the Enterprise X
container. In the Enterprise X component diagram System A has
a relationship to three other systems; two are interface relation-
ships, one provided and one required, and the other is a direct
connection. System A, the container, maintains those relation-
ships as indicated by the external ports, Interface A, Interface
B1 and Connection AE.

The formal software architecture document for this soft-
ware would contain these diagrams as well as detailed textual
descriptions of each component, interface and connection at
each level. For the interfaces these would describe the nature
of the interface such as data exchange or direct program-to-
program communication. It might also include a reference to any
standards that might apply. As for the components, specifically
the system components of the enterprise level for example,
the text description would provide information about which
systems will be developed and which might be COTS products.
Clearly not all information can be conveyed in just the compo-
nent diagrams alone. However, it has been demonstrated that a
great deal of information can. More importantly, the information
that is provided is exactly the kind of information that might be
overlooked had the design started without any consideration of
software architecture.

Concluding Remarks
While the methodology described here can go a long way to

improving our software engineering design drawings and docu-
ments, further work is needed to refine the methodology. More
consideration needs to be given to the application layer and
the macro and micro components layers of the original model.
A formal method for the validation and verification of models
created with this methodology is also needed. These offer only a
few areas for further research.

This paper has attempted to close, or at least reduce the width
of, the gap between software architecture theory and practice.
A methodology was described which demonstrates how to use
UML component diagrams as a way to document and communi-
cate software architectures clearly and in a reproducible fashion.
This methodology leverages one of the two modern definitions of
software architecture found on SEI’s website and a lesser-known
model for producing software architectures.

CrossTalk—November/December 2011 15

PUBLISHER’S CHOICE

If software engineering is ever to achieve the same status
as other engineering disciplines, or even approach that status,
practitioners must be able to produce universally understood
and reproducible design documents. The history of previous
work in the area of software architecture has provided a rather
stable theoretical foundation. UML, the de-facto standard for
creating software engineering design diagrams provides the
tools. It is up to us, the practitioners, to use these tools in the
way they were intended. It is hoped that this paper demon-
strates how to do just that.

Acknowledgements
The author wishes to thank Bob Nicholson, Steve Chappell,

Mike Watts and Dr. Jiacun Wang for their review of this paper as
well as their thoughtful comments.

Michael Tarullo has 29 years of experience
in software design and development. Approxi-
mately half of this time was spent develop-
ing software in the mainframe environment.
The remainder of his career has been spent
designing and developing object-oriented
software in C++, C#, and Java. He is currently
an Enterprise Architect at L-3 Communications
supporting System Wide Information Manage-
ment, the FAA SOA initiative for the NextGen
Air Traffic Management system. He also is an
adjunct professor of Software Engineering at
Monmouth University, where he teaches both
undergraduate and graduate courses in Java
Programming and Software Design. Mr. Tarullo
has a Bachelors Degree in Geoscience from
The New Jersey City University and a Masters
Degree in Software Engineering from Mon-
mouth University.

L-3 Communications
Contractor, FAA William J. Hughes
Technical Center
Atlantic City, NJ 08405
Phone : (609) 485-5294
E-mail: michael.ctr.tarullo@faa.gov
E-mail: michael.tarullo@l-3com.com

ABOUT THE AUTHOR

1. <http://www.sei.cmu.edu/architecture/start/definitions.cfm>
2. Kruchten, P., Obbink, H. and Stafford, J.; The Past, Present and Future of Software Architecture;
 IEEE Software; March/April 2006
3. Shaw, M. and Garlan, D.; Software Architecture – Perspectives On An Emerging Discipline; Prentice Hall; 1996
4. Bass, L., Clements, P. C. and Kazman, R.; Software Architecture in Practice; Addison-Wesley; 2003, 2nd edition
5. Mowbray, T. J and Malveau, J.; CORBA Design Patterns; John Wiley & Sons; 1997
6. Tyree, J. and Akerman, A.; Architecture Decisions: Demystifying Architecture;
 IEEE Software; v.22, no.2, 2005
7. <http://bluehawk.monmouth.edu/~btepfenh/Courses/SE505/Sections/principlesdesign.html>
8. Booch, G., Rumbaugh, J. and Jacobson, I.; The Unified Modeling Language User Guide; Addison Wesley;
 2nd Edition; 2005
9. Rumbaugh, J., Jacobson, I. and Booch, G.; The Unified Modeling Language Reference Manual; Addison Wesley;
 2nd Edition; 2005
10. Booch, G., Maksimchuk, R. A., Engle, M. W., Young, B. J., Conallen, J. and Houston, K. A.; Object-Oriented
 Analysis And Design With Applications; Addison Wesley; 3rd Edition; 2007
11. Lau, K. and Wang, Z.; Software Component Models; IEEE Transactions On Software Engineering;
 October 2007, vol. 33, no. 10

REFERENCES

mailto:michael.ctr.tarullo@faa.gov
mailto:michael.tarullo@l-3com.com
http://www.sei.cmu.edu/architecture/start/definitions.cfm
http://bluehawk.monmouth.edu/~btepfenh/Courses/SE505/Sections/principlesdesign.html

16 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

This paper describes a comparative study undertaken to as-
sess the benefits of using Orthogonal Arrays (OA) for generat-
ing test plans in IT systems in the financial services industry.
The formal process used for the comparative study consisted
of enlisting the support of senior management and conduct-
ing multiple side-by-side pilots to compare the cost and risk of
OA based testing versus the Business as Usual (BAU) test-
ing practices. Our customers ran 20 side-by-side studies to
evaluate the effectiveness of OA based testing and realized
an average reduction in total test effort by 41%. In addition, all
defects detected by the BAU process were detected by the
OA based testing process. Further, in 40% of the cases, the
OA based testing process found more defects. The cost and
schedule savings translated to tens of millions of dollars in labor
and schedule.

The paper also discusses the pros and cons of OA testing
versus other testing approaches, namely, pairwise testing, N-
Way testing, and classical Design of Experiments (DoE).

Utilizing OAs for system and software testing will significantly
reduce cost, schedule and risk. For the aerospace and defense
industries, OA testing will help address the current environment
of tighter budgets and schedules while ensuring end users
promised performance. This process is being adopted by several
top tier defense and aerospace system developers for software
and system testing and its applications have demonstrated
significant reduction in both program cost and risk.

Overview of OA Testing Process
OAs are a mathematical tool that has been studied and uti-

lized for centuries by mathematicians, scientists, and engineers
for a variety of applications [1,2,3,4,5,6,11,12]. The most well
known, Leonhard Euler, utilized OAs (also called Latin Squares)
to cleverly arrange multiple ranks of military officers and for war
games. One of the co-authors, Madhav Phadke, introduced the
use of OAs for software testing while at AT&T Bell Laboratories
in the 1980s, achieving great success for network and telecom-
munications system testing [7].

Consider a function to be tested with four parameters: A, B,
C, and D. These parameters could be the arguments of the com-
mand line entered from the terminal, the state of an interface,
input from a connecting device, or the initial states of internal
parameters. Suppose each parameter has three possible levels
as given in Table 1. This parameter-level table specifies the test
domain consisting of 81 possible combinations of the test pa-
rameter levels. (In the Robust Design literature, “factor” is often
used in place of “parameter.”)

Utilizing Design
of Experiments
to Reduce
IT System
Testing Cost
Kedar M. Phadke, Phadke Associates, Inc.
Madhav S. Phadke, Phadke Associates, Inc.
Abstract. Software and system testing cost the commercial and defense
industry hundreds of millions of dollars annually. In addition, conducting
each set of tests takes multiple man-months, delaying time to market of
key technologies. In this current economic environment, organizations are
looking for ways to reduce the cost of testing and time to market while
ensuring that defects are not passed on to the customer. At the same
time, organizations are very reluctant to change their standard testing
processes due to the heavy cost of field failures, regulatory concerns, and
risk-averse culture.

Test	
Parameter

Level	 1 Level	 2 Level	 3

A A1 A2 A3

B B1 B2 B3

C C1 C2 C3

D D1 D2 D3

Test	 Number Test	 Parameter	 A Test	 Parameter	 B Test	 Parameter	 C Test	 Parameter	 D

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

The job of a software tester is to attempt to break the system
in every possible way so that all faults will be detected, which
will therefore increase the likelihood of delivering fault-free
software to the customer.

Table 2 shows the OA L9. It has nine rows and four columns.
The rows correspond to test cases; the columns correspond to
the test parameters. Thus, the first test case comprises Level 1
for each parameter, i.e., it represents the combination A1, B1,
C1, D1. The second test case corresponds to the combination
A1, B2, C2, D2, etc.

Table 1: Test Parameters and Levels

CrossTalk—November/December 2011 17

PUBLISHER’S CHOICE

Application Loan	 Type
Credit	

Verification
Payment Payment	 Amount

Customer	 Data	
Access

Datacenter	 Status

Online Home	 Equity Experian Check	 through	 mail Correct	 amount Online	 reports All	 online

Phone
Non-‐

Traditional
Equifax

Bank	 transfer	 via	
phone

Underpayment Mailed	 reports
1	 Datacenter	 offline	
(Routine	 service)

Retail	 Center Jumbo	 1 Transunion
Debit	 card	 via	
phone

Overpayment
Online	 and	 mailed	

reports
2	 Datacenters	
offiline	 (Critical)

Mail Jumbo	 2 Internal*
Bank	 transfer	 via	
online	 portal

Permature	
repayment	
(Termination)

Partner	 Broker Traditional
Debit	 card	 via	 online	

portal
Final	 payment	
(Termination)

Cash	 at	 retail	 center

Check	 at	 retail	
center

Third	 party	 transfer

An OA has the balancing property that, for each pair of col-
umns, all parameter-level combinations occur an equal number
of times. In OA L9, there are nine parameter-level combinations
for each pair of columns, and each combination occurs once.
Taguchi [8] and Madhav S. Phadke [9] provide a comprehensive
discussion of OAs and their selection for specific applications.
By conducting the nine tests indicated by L9, we can accom-
plish the following:

• Detect and isolate all single-mode faults. A single-
mode fault is a consistent problem with any level of any single
parameter. For example, if all cases of factor A at Level A1
cause error condition, it is a single-mode fault. In this example,
tests 1, 2, and 3 will show errors. By analyzing the information
about which tests show error, one can identify which factor level
causes the fault. In this example, by noting that tests 1, 2, and
3 cause an error, one can isolate A1 as the source of the fault.
Such an isolation of fault is important to fix the fault.

• Detect all double-mode faults. If there exists a con-
sistent problem when specific levels of two parameters occur
together, it is called a double-mode fault. Indeed, a double-mode
fault is an indication of pairwise incompatibility or harmful inter-
actions between two test parameters.

• Multimode faults. OAs of strength 2 can assure the
detection of only the single- and double-mode faults. However,
many multimode faults are also detected by these tests by virtue
of the fact that OA-based tests are uniformly distributed in the
test domain.

Real software testing problems tend to have dozens of pa-
rameters with two to 15 potential values per test parameter, thus
manually determining appropriate OAs is a challenge for most
software test professionals. Commercial tools for generating OAs
for specific problems can be very helpful for this task. The cases
studies in this paper were all conducted using a commercial soft-
ware tool, rdExpert™ Test Suite, for OA generation [10].

Enterprise Mortgage IT System Validation

Several case studies have been conducted to validate the
OA testing process for IT systems within the financial services
industry. This section details one specific case study for a mort-
gage bank. The next section provides a summary of 20 similar
studies conducted at 10 large financial services firms.

A major mortgage bank was revamping its enterprise IT
system to better meet customer needs. The bank has several
business processes geared towards different stages of mort-
gage processing. In the past, each business process had its own
software systems, and the hand-over between processes were
made manually. This caused delays in servicing customers and
resulted in loss of business. For example, the bank had a system
for accepting mortgage applications and a separate system
for underwriting. This meant that once an application was ac-
cepted, it had to be manually input in the underwriting system,
processed, and then a quote was manually input back into the
application portal for the customer. In the new environment of
customers demanding immediate feedback on mortgage ap-

plications, this was not fast enough. To address this customer
need, the mortgage bank was developing an enterprise integra-
tion platform to automatically transmit data between the dispa-
rate systems and make the end-to-end process more efficient.

The bank had hired an outsourced provider to develop and
test the integrated system. The scope of the system included
all major business processes such as 1) loan application and
approval, 2) payment acceptance and management, 3) data
storage and access, and 4) corporate reporting and governance.
At the time the bank began considering OA for testing, the out-
sourced team was seven months behind on delivery and 20%
over budget.

The bank management culture was by tradition risk-averse
so the teams were hesitant to change the current BAU test-
ing approach. This risk-averse culture, coupled with the severe
consequences of field failure and regulatory rules, made it even
more difficult to change the process. To alleviate these concerns
and at the same time assess the benefits of using OA for test-
ing, the management decided to fund parallel teams to conduct
testing of the application. One team would utilize the traditional
BAU approach and the other team would utilize the OA testing
approach. Both teams were tasked to complete the entire end-
to-end process, including test case design, test scripting, test
execution, defect analysis, and root cause identification. After
completing the process, management would be able to evalu-
ate the effects of using OA compared to BAU on cost, risk, and
schedule.

The BAU process was an industry standard process and the
key steps were as follows:

• Understand the most-likely customers.
• Understand the most-likely paths in processing customers’

mortgage applications.
• Create several test scenarios that ensure all top-level

requirements are covered, with majority focused on most-likely
circumstances.

• Include crisis scenarios.

Table 3 provides a simplified view of the systems integration
test planning scenarios. The highlighted values were considered
most likely from a customer perspective.

Table 3: Simplified View of Systems Integration Scenarios

18 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

Once the team had determined the most likely customer
scenarios and paths, they would generate test cases to validate
those specific situations. They would then add variations to the
scenarios to include less likely customer scenarios, crisis situ-
ations, and other test cases suggested by experts. The team
utilizing the BAU test process generated 188 test scenarios to
validate the enterprise system.

The OA team utilized a different approach for selecting test

scenarios and the key steps were as follows:

• Understand the requirements domain (determine the
parameter-level table).

• Peer review the test parameters and levels.
• Generate test conditions based on OA.
• Prioritize the test plan for most likely and most important

customer scenarios.

Instead of working on the most likely scenarios up front, the
OA team first compiled a thorough summary of the key param-
eters and levels. Table 4 in the appendix provides an abridged
summary of the test parameters and levels. Please note that
some details have been changed to preserve client confidential-
ity. Prioritization of the test was completed at the end, just before
execution. The OA team generated 81 test scenarios to validate
the enterprise system. Both teams generated test scripts, ex-
ecuted the test plans, and evaluated defects. Table 5 provides a
summary of the results.

Table 4: Abridged List of Test Parameters and Values for Enterprise System Validation

Factor Name Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

Application Online Partner Broker Phone Mail Retail Center

Applicant History New Customer Previously Approved but
No Loan Issued Previously Denied Previous Customer

Loan Type Jumbo 1 Traditional Jumbo 2 Non-Traditional Home Equity

Credit
Verification Equifax Experian Internal* Transunion

Title
Accreditation Title Partner 2 Title Partner 3 Title Partner 1

Appraisal Partner Appraisal Partner 1 Not Necessary (Override) Appraisal Partner 2

Payment Bank Transfer by
Online Portal Check through Mail Debit Card by Online

Portal
Cash at Retail
Center

Check at Retail
Center Third Party Transfer Debit Card by

Phone
Bank Transfer by
Phone

Payment Amount Correct Amount Premature Repayment
(Termination)

Final Payment
(Termination) Overpayment Underpayment

Customer Data
Access Mailed Reports Online and Mailed Reports Online Reports

Broker
Comissions Bank Transfer Check through mail

Datacenter
Status All Online 2 Datacenters Offline

(Critical)
1 Datacenter Offline
(routine service)

Security Status No Issues Major Security Issues
(Critical) Small Security Issues

Network Status No Issues Portions of Network Offline
(routine service)

Business
Reports Business Report 2 Business Report 1 Tax/Accounting Report

1 Business Report 4 Tax/Accounting
Report 2 Business Report 3

Governance Independent Private
Entity Government Entity

The side-by-side comparison clearly shows that the OA ap-
proach detected all the unique defects detected by the BAU
process. Thus, both methods have the same effectiveness. The
OA approach reduced the test planning effort from 480 hours
to 145 hours, a 70% reduction. The test execution effort is the
sum total of the effort needed for the environment set up, run-
ning the tests, and defect analysis. The BAU approach required
1,670 hours for test execution while the OA approach needed
only 890 hours, which represents a 47% saving. At the aver-
age loaded hourly cost of $72, the cost for the BAU approach
was $154,800 whereas the cost of the OA approach was only
$74,520, representing a 52% cost reduction.

Side-by-Side Studies at Multiple Financial
Services Firms

Similar to the mortgage bank case study described above,
20 complete side-by-side studies were conducted at 10 large
financial services firms in the U.S. and Europe.

Test	 Plan
No	 of	
Tests

Test	 Planning	
Effort	 (hrs)

Test	 Execution	
Effort	 (hrs)

Unique	 Defects	
Found

BAU	 (Business	 as	 Usual) 188 480 1670 12

OA	 (using	 rdExpert™	
Software)

81 145 890 12

Savings	 Comparison 107 335 780 Same	 Defect	
Coverage

Table 5: Summary of Results: Enterprise Application Validation

CrossTalk—November/December 2011 19

PUBLISHER’S CHOICE

Real Side-by-Side
comparisons for
unbiased
assessment of
OA method

Conducted on 20
Test Tasks across
multiple
companies,
technologies, and
stages in the life
cycle

Test
Tasks

Test
Planning

Test
Scripting

and
Execution

Defect
Analysis

Test
Planning

Test
Scripting

and
Execution

Defect
Analysis

Compile and
Compare
Results

Using OA Using BAU

Phadke Associates: Ratio of Number of Tests (OA vs BAU)

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Phadke Associates: Ratio of Number of Defects Found (OA vs BAU)

0.00

1.00

2.00
3.00

4.00

5.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Phadke Associates: Ratio of Test Effort (OA vs BAU)

0.00
0.20
0.40
0.60
0.80
1.00
1.20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Phadke Associates: Ratio Of Number of Tests (OA/BAU)

Phadke Associates: Ratio Of Number of Defects (OA/BAU)

Phadke Associates: Ratio Of Test Effort (OA/BAU)

Four of the firms were investment banks, three were health/
auto/property/liability insurance companies, one was a life
insurance company, and two were retail/mortgage banks. All
of the case studies included parallel teams so that manage-
ment could get truly unbiased information to compare their BAU
process versus the OA testing process. Figure 1 shows a flow
diagram for the side-by-side process utilized by the companies.
Note that the process is the end-to-end testing process includ-
ing test planning, scripting, execution, and defect analysis.

Graph 1: Result of Side-by-Side Studies

Figure 1: Side-by-Side Process

The objective of the side-by-side studies was to ascertain
that, 1) OA tests do not increase risk (do not miss defects
versus BAU), and 2) OA testing process does not increase total
test effort. Graph 1 displays the ratios of test cases, defects
detected, and total test effort for all 20 case studies.

The key findings for the management teams were that:

• All unique defects found by BAU were detected by OA
testing process in each of the 20 cases.

• In 40% of the cases, OA tests detected more defects.
Thus, in many cases, OA tests provided more risk reduction
than BAU.

• Total test effort was reduced by 41% on average. This was
a saving of tens of millions of dollars.

• In the four cases where the number of test cases or test
effort increased, more defects were detected, so time was
utilized productively.

In addition, the ratio of test effort (OA/BAU) is graphed ver-
sus the ratio of defects detected (OA/BAU) to further compare
the effectiveness of OA testing versus BAU at the 10 Financial
Institutions. Graph 2 displays the ratio of effort versus the ratio
of defects detected. There are eight points in Quadrant I. These
points represent the cases where the test effort of OA is less
than or equal to BAU and the number of defects is greater than
the number detected by BAU. This is the most desired quadrant
to be in. Eleven points are the line bordering Quadrants I and
IV. These points represent cases where both OA and BAU find
the same number of faults. However, for these points the test
effort for OA is less than the test effort for BAU. One point lies
in Quadrant II. For this case, the OA required more test effort
and OA found more defects. In other words, there was more test
effort but the team found more defects. There are no test points
in Quadrant III and Quadrant IV that are the least desirable
quadrants to be in.

Thus the side-by-side case studies clearly demonstrated that
the OA testing process is effective for significantly reducing the
test effort and also simultaneously reducing the risk for IT test-
ing in the financial services industry.

Graph 2: Ratio of Test Effort vs. Ratio of Defects

Ratio of Test Effort vs Ratio of Defects Detected
Phadke Associates, Inc

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

Ratio of Defects Detected (OA vs BAU)

R
at

io
 o

f T
es

t E
ffo

rt
 (O

A
 v

s
B

A
U

)

QI

QII QIII

QIV

Ratio of Number of Tests Effort vs. Ratio of Defects Detected
 .cnI ,setaicossA ekdahP

20 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

Command and Control System
Similar to the financial services industry, the defense and

aerospace industries are also facing significant pressure to
reduce program cost and schedule. The OA testing process has
been successfully applied by several teams in both government
and industry. One of the more pressing challenges is effective
testing of complex software intensive systems. The Defense
Information Standards Agency (DISA) conducted a retrospective
pilot of the OA testing process for one of their key modules of a
software-based command and control system. The module was
designed to retrieve and process data from multiple data sourc-
es and display the data in a composite picture. The data sources
included human intelligence, measurement and signature intel-
ligence, signals intelligence, Blue/Red Force data, friendly and
hostile data from air, ground and sea, and several other sources.
The contractor had developed a test plan to validate the module
utilizing their BAU practices. Utilizing the OA testing process
with the assistance of Phadke Associates, DISA was able to
reduce the test plan size by more than 50% and estimated that
the test planning effort could be reduced from 24 staff weeks
to one staff week. The estimated savings of the reduced test
plan and staff savings was $377,000. In addition, the analysis
demonstrated that the original contractor test plan had over 340
test gaps and all gaps were eliminated by the more efficient OA
testing process. This retrospective pilot demonstrated significant
capability of the OA testing process to reduce test cost, risk, and
schedule for defense software systems.

Comparison With Other Test Planning Methods

During the piloting, the teams also compared OA testing with
other common test planning methods, namely pairwise, N-Way,
and classical DoE. Based on their findings they decided to
conduct side-by-side testing pilots using only the OA testing
process. Table 6 lists a summary of pros and cons identified for
each method versus OA testing.

The teams realized that pairwise testing, a method to ensure
that each pair is tested at least once, had the potential to reduce
the number of test cases versus OA in some instances; however,
the additional cost of defect analysis outweighed the potential
reduction in execution cost. Since the test cases created by
the pairwise method can be unbalanced, it requires significantly
more time to isolate the root causes of defects. In addition, they
found it challenging to effectively assess performance in terms
of the statistical properties like mean and variance. In fact, to ef-
fectively conduct analysis of faults and results, the teams found
they had to run several additional test cases. OAs distribute
test cases uniformly in the multidimensional test domain [11],
whereas pairwise test cases tend to be sparser in some regions
than other regions. Consequently, pairwise tests can have less
ability to detect faults compared to OAs.

N-Way is a test planning method that ensures that each
N-Way combination of parameters is tested at least once. For
example, users could specify all three-way combinations, in
which case each triplet would be tested at least once in the test
plan. One of the first challenges the teams discovered when
examining the N-Way testing method was that the number of
test cases, even for triplets, was significantly larger than their
current BAU process, thus implying a significantly increased test
execution cost. Also, similar to pairwise testing, the N-Way test
cases are unbalanced and require significantly more time and
effort to conduct defect analysis and assess performance. Due
to these cost and schedule increases, this method was deemed
financially prohibitive. Proponents of N-Way testing site the
need to identify rare high order defects, such as five-way or six-
way defects. Upon deeper analysis, teams have realized that the
preferred approach to address this need is to use hierarchical
test plans based on utilizing the broad knowledge of the system
(or system-of-systems) architecture. This approach is more
effective for detecting high order defects and also significantly
more economical compared to the five-way or six-way test plan.

Test	 Method Pros Cons

Business	 as	 Usual
Can	 be	 effective	 and	 efficient	 with	 highly	
skilled	 gurus	 and	 lots	 of	 time.	 	 (These	 are	
both	 rare	 commodities!)

Test	 plan	 effectiveness	 highly	 dependant	 on	 the	 individual.	
No	 consistency	 across	 organizations.

Pairwise	 (not	 OA) Sometimes	 fewer	 tests	 than	 OA

Unbalanced	 test	 cases	 so	 debugging	 is	 challenging	 and	
performance	 assessments	 for	 continuous	 outputs	 even	
more	 challenging.	 	 Costs	 for	 test	 data	 analysis	 are	 much	
larger.

N-‐Way	 (Greater	 than	
2-‐way)

Generally	 better	 coverage	 than	 OA	 and	
Pairwise

Significantly	 more	 tests	 so	 not	 affordable	 in	 today's	
economic	 environment.	 	 The	 cost	 is	 almost	 always	 much	
more	 than	 Business	 as	 Usual.	 	 Tests	 are	 unbalanced	 so	
same	 debugging	 and	 performance	 assessment	 challenges	
as	 Pairwise.

Classical	 Design	 of	
Experiments

Geared	 towards	 statistical	 modeling

Requires	 significant	 amount	 of	 staff	 training	 and	 expert	
guidance.	 	 Very	 difficult	 to	 cost	 effectively	 implement	 on	 a	
broad	 scale.	 	 Doesn't	 effectively	 address	 the	 multi-‐level	
designs	 that	 are	 necessary	 for	 system	 and	 software	
testing.	

Table 6: Comparing other Test Planning Methods vs. OA testing

CrossTalk—November/December 2011 21

PUBLISHER’S CHOICE

Classical DoE is primarily aimed at model building that is not
the objective for a majority of testing tasks, especially when
it comes to software and IT testing. The methodology often
emphasizes Resolution IV designs with repetitions that result in
significantly more tests, thus making the method financially un-
affordable, similar to N-Way testing. To combat the financial con-
cerns, practitioners of classical DoE often recommend reducing
the number of factors or restricting the number of levels of each
factor; however, this technique increases the risk of missing
faults and adds significantly more to the downstream program
cost and risk. This is particularly challenging for software and IT
testing problems that involve mixed level designs with numerous
factors having more than two levels (often many more levels).
For example, if you have five data types for a particular test
parameter, you will have to restrict your test to only two of those
data types. Another key challenge is the classical DoE concept
of repetitions that are necessary for building confidence in the
statistical models. For software and IT systems, repetitions add
significant cost but very little additional technical information.

Conclusion

The advantage of utilizing OAs for testing was demon-
strated through 20 real end-to-end case studies where the OA
process was run in parallel with the BAU process for IT testing
at 10 large financial services institutions. OA-based testing
resulted in a 41% reduction in total test effort (labor hours)
and in all 20 cases, all defects detected by the BAU process
were detected by the OA process. In 40% of the cases, the
OA based testing process found more defects. The cost and
schedule savings for these cases translated to tens of millions
of dollars in labor and schedule.

The technical and managerial challenges for software and
system testing in the defense and aerospace industry parallel
those in the financial services industry in both scale and press-
ing need for “defect free” system delivery. Similar to the financial
services industry, several defense and aerospace companies
have piloted and are adopting the OA testing process and the
rdExpert Test Suite Software. The results so far show that OA
testing will help defense and aerospace industries meet the
current challenge of tighter budgets and schedules while confi-
dently delivering the end users promised performance.

Disclaimer
© Copyright 2011 by Phadke Associates, Inc.

All rights reserved.

1 . Addelman, S., “Orthogonal Main Effect Plans for Asymmetrical Factorial Experiments,” Technometrics, Vol. 4, 1962, pp. 21-46.
2. Kempthorne, O., The Design and Analysis of Experiments, Robert E. Krieger Publishing, New York, 1979.
3. Plackett, R.L. and J.P. Burman, “The Design of Optimal Multifunctional Experiments,” Biometrika, Vol. 33, pp. 305-325.
4. Seiden, E., “On the Problem of Construction of Orthogonal Arrays,” Annals of Mathematical Statistics, Vol. 25, 1954, pp. 151-156.
5. Rao, C.R., “Factorial Experiments Derivable from Combinatorial Arrangements of Arrays,”
 Journal of Royal Statistical Society, Series B, Vol. 9, 1947, pp. 128-139.
6. Raghavrao, D., Construction of Combinatorial Problems in Design Experiments, John Wiley and Sons, New York, 1971.
7. Brownlie, Robert, James Prowse, and Madhav S. Phadke, “Robust Testing of AT&T PMX/StarMAIL Using OATS,”
 AT&T Technical Journal, Vol. 71. No. 3, May/June 1992, pp. 41- 47.
8. Taguchi, Genichi, System of Experimental Design, Don Clausing, ed., UNIPUB/Kraus International Publications,
 New York, Vols.1, 2, 1987.
9. Phadke, Madhav S., Quality Engineering Using Robust Design, Prentice Hall, Englewood Cliffs, N.J., 1989.
10. rdExpert™ Test Suite Software. Published and distributed by Phadke Associates, Inc. <http://www.phadkeassociates.com>.
11. Phadke, Madhav S., “Planning Efficient Software Tests” Crosstalk: Journal of Defense Software Engineering,
 Published by the Software Technology Support Center, October 1997.
12. Phadke, Madhav S., “Robust Testing: A Process for Efficient Fault Detection and Isolation”, Aerospace Testing Seminar, 2006.

REFERENCES

ABOUT THE AUTHORS
Kedar M. Phadke is Vice President of Phadke Associates,
a global consultancy and software company specializing in
statistical tools for improving testing and design productiv-
ity. Kedar has led numerous deployments for improving test
and design effectiveness. He has a MS in Statistics, MS in
Management, and a BS in Economics from the Wharton
School, University of Pennsylvania.

Kedar M. Phadke
Vice President
Phadke Associates, Inc.
1 Shawnee Court
Colts Neck, NJ 07722
E-mail: kedar@phadkeassociates.com

Dr. Madhav S. Phadke is the Founder and President
of Phadke Associates, Inc. He is an ASQ Fellow and the
author of the first engineering textbook on Robust Design
Methods in the U.S., “Quality Engineering Using Robust De-
sign”. He holds a Ph.D. in Mechanical Engineering and MS
in Statistics from the University of Wisconsin - Madison, MS
in Aerospace Engineering from the University of Rochester,
and a BTech in Mechanical Engineering from the Indian
Institute of Technology - Mumbai. Prior to founding Phadke
Associates, Dr. Phadke was a manager in AT&T Bell Labs, a
visiting scientist at the IBM Watson Research Center, and a
Research Associate at the Army Math Research Center.

Madhav S. Phadke, Ph.D.
President
Phadke Associates, Inc
1 Shawnee Court
Colts Neck, NJ 07722
E-mail: madhav@phadkeassociates.com

http://www.phadkeassociates.com
mailto:kedar@phadkeassociates.com
mailto:madhav@phadkeassociates.com

22 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

DI Inspection
performance

0 - 0.1 Worse (W)
0.1 – 0.2 Very Low (VL)
0.2 – 0.3 Low (L)
0.3 – 0.4 Normal (N)
0.4 – 0.5 Above Normal (AN)
0.5 – 0.6 High (H)
0.6 – 0.7 Very High (AV)
0.7 – 0.8 Best (B)
0.8 – 0.9 Excellent (E)
0.9 - 1 Ideal (I)

Introduction
A defect in software is expensive especially when it dwells

and manifests. One of the prevailing challenges in the software
industry is therefore the production of defect-free software
[1]. The continuance of IT enterprise, hence, depends upon the
choice of apt defect management strategies in order to gener-
ate defect-free software.

Quality control and quality assurance techniques are the two
most successful defect management strategies. Quality control
activity is for the product and quality assurance techniques are
for the process. The current trends in the industry concentrate
on testing, which is a quality control activity. However, what mat-
ters is the process through which a product is developed, and
therefore excellence in the process plays a vital role towards
delivery of high quality products. Among several techniques ap-
plied for quality assurance in the software field, like walkthrough,
inspection, and review, inspection is one of the promising tech-
niques for defect management. Despite its perceptible signifi-
cance, inspection is either very casually treated or more often
overlooked and many times it is maintained only for accounting
purposes. One of the rationales being projected to escape the
vital process step is identifying it as a mind-numbing, lengthy
activity rather than a quality improvement process.

Since quality is a quantifiable unit, this article aims to draw
the attention of the software community including management,
developing teams, stakeholders, and outsourcing agents to an
important aspect of bringing in a cultural change. It is worth

Abstract. Advancement in fundamental engineering aspects of software
development enables IT enterprises to develop a more cost effective and
better quality product through aptly organized defect management strate-
gies. Inspection continues to be the most effective and efficient tech-
nique of defect management. To have an appropriate measurement of the
inspection process, the process metric, Depth of Inspection (DI) and the
people metric, Inspection Performance Metric (IPM) are introduced. The
introduction of these pair of metrics can yield valuable information from a
company in relation to the inspection process.

Defect Management
Using Depth of
Inspection and the
Inspection
Performance Metric
T.R. Gopalakrishnan Nair, Aramco Endowed
Chair-Technology, PMU, KSA
V. Suma, RIIC, Dayananda Sagar Institutions

for the industry to notice and comprehend the connotation of
software inspection as process integration introduced recently
by the implementation of a pair of metrics that are meant to
measure the quality level of inspection process and further
measure the competency of the people. The two metrics are DI,
a process metric, and IPM, a people metric [2].

The DI Metric
Let us have a closer look at the apparently simple but power-

ful concept of DI. Let Ni be the number of defects captured
by the inspection process and Td be the number of defects
captured by both inspection and testing approaches.

Equation A:

DI = Ni / Td

DI can be measured phase-wise or before the deployment of
the product using the above metric.

DI evaluation is realized in two phases. In the first phase, DI is
calculated using shop floor defect count for a particular set of
projects. This phase enables the software company to analyze
the depth in which inspection process has occurred for a set of
particular projects either phase-wise or at the project level. From
our deep and rigorous investigations carried out across several
service-based and product-based software industries of vari-
ous production capabilities, it is found that the DI value varies
from project to project. The metric is distinctive as it quantifies
the inspection process with measurable levels, which is not
observed in current industry standards. DI is considered to be in
the range of zero to one where zero is nil performance and one
indicates 100% defects captured exclusively through inspection
process, which is hardly ever possible. An inspection level of 0.3
to 0.5 is considered normal inspection process and a level of 0.5
onwards requires high competency in the process [2].

Table 1 specifies the ranges of DI values [2]. With this chart,
it is now possible for software personnel and all stakeholders
to identify the maturity level of the company and enable them
to either continue with the existing level or formulate strategies
towards up gradation of their level. An additional strength of this
mode of quality measurement is to throw light towards predic-
tion of desired level of inspection.

Table 1: Range of DI Values

CrossTalk—November/December 2011 23

PUBLISHER’S CHOICE

[]DI = []X []β + [Ε] where

 []DI = []Parameters × []fficientsprocessCoe + [Error Term]

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Project
hours(*)

250 263 300 507 869 1806 2110 4248 4586 4644 6944 7087 7416 8940 9220

DI at
req.
phase

0.53 0.49 0.67 0.52 0.33 0.48 0.5 0.46 0.39 0.27 0.44 0.44 0.49 0.44 0.47

DI at
des.
phase

0.5 0.38 0.46 0.54 0.42 0.5 0.44 0.49 0.44 0.4 0.64 0.46 0.57 0.45 0.43

DI at
imp.
phase

0.5 0.57 0.44 0.53 0.37 0.21 0.39 0.51 0.51 0.4 0.55 0.5 0.46 0.47 0.49

Avg DI 0.51 0.48 0.52 0.53 0.37 0.40 0.44 0.49 0.45 0.36 0.54 0.47 0.51 0.45 0.46

Tc (%) 96.0 95.0 91.5 96.0 89.8 87.0 92.0 95.4 96.5 88.3 96.9 96.5 93.1 95.8 92.3

(*) Total project time is measured in terms of person hours and contains documentation times, training time
and release time etc., which are not relevant for this discussion; P = Project; req – Requirements analysis
phase; des – Design phase; imp – Implementation phase; Avg - Average; Tc –Total defects captured in the
complete project

Prediction of quality of inspection process is not yet achieved.
DI is a process metric that can predict the quality of software
inspection process. The second phase consists of prediction of
DI value for a new project through the approach of mathemati-
cal modeling scheme, which uses Multiple Linear Regression
(MLR) models.

Prediction of DI is through the evaluation of process coeffi-
cients from the historical projects. Process coefficients are a set
of β constants (β0 to β4) which are evaluated using least square
estimates or using Matlab support. A minimum of five projects
(P1 to P5) is required to evaluate the process coefficients.
However, at a larger scale, depending on the history of the
company and the past records of the projects that the company
had handled, several groups of samples can be taken. It is also
observed from the investigation made by several researches
that effectiveness of inspection is influenced by four major and
mutually exclusive parameters [2]. They are:

x1 = inspection time
x2 = preparation time
x3= number of inspectors
x4= experience level of inspectors
Having obtained the process coefficients and substituting

desirable values to the inspection influencing parameters, it is
now possible for the software company to predict the value of
dependent parameter Y (DI) as given in equation (B) [3].

Equation A:

Equation B:

Table 2: DI Estimation

Equation C:

Y = β0+β1x1+ β2x2+ β3x3+ β4x4 + e

	

Matrix representation for the prediction of DI is given in equation (C).
Software companies using the stabilized process coefficients

can now predict the desired level of DI for any project (Pi) by
modulating the inspection influencing parameters. Alternatively,
with the evaluation of process coefficients it is also possible
to tune the values of the inspection influencing parameters to
achieve the desirable DI value. Table 2 illustrates the DI com-
putation of 15 projects that are sampled from various product-
based and service-based software industries. The sampled
projects depicted throughout this article are similar types of
projects that are developed using Java and operate in a similar
type of environment.

Discernible benefits of DI in software organization are:

1. DI is a quality metric introduced in order to quantify the
depth in which the inspection process is performed.

2. The objective of introducing DI as a defect detection metric
is to enable one to analyze the defect capturing ability of the
company through an inspection approach.

3. DI is a defect preventative metric whose implementation
in the software industry acts as a lesson learned from previous
projects with regard to the depth in which inspection is conduct-
ed and thus indicates the inspection team either “to improve the
inspection performance” or “to maintain the desired level
of inspection.”

4. The aim of DI as an indicator metric is to inform the test
team of the depth in which defects are detected through the

24 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

inspection approach. Thereby, it directs the test team to frame
effective strategies to eliminate remaining defects.

5. The rationale for the introduction of DI is to provide a
deep visibility to the inspection team, the company manage-
ment, outsourcing agents, and other stakeholders about the
depth in which inspection is performed and thereby to provide
enough transparency in the process.

6. It is observed that CMMI® Level 4 and above certified
software industries are capable of performing inspection with
an average DI value of 0.4 to 0.5. This demands that the test
team puts in a certain amount of test effort to detect and
eliminate remaining defects. A decrease in DI value further
demands increased test effort, test time, increased develop-
mental cost, and rework cost.

7. Project success depends upon quality [4]. Business
success depends upon cost of quality [5]. According to the
cost quality analysis, cost of rework is usually several orders
higher at final stages when compared to quality implemen-
tation at initial stages [6]. The variation depends on the
phase in which a defect originated and was later detected.
The philosophy and culture that we propagate here offers a
watertight control over defect management with appropri-
ate quantitative metrics and methods in the process domain.
Hence, the DI metric, with its distinguishing feature of giving
process visibility, paves the way for stakeholders to control
their developmental cost.

8. Implementation of DI is therefore a billion dollar savings
to a software company since they are now able to visualize
the depth in which all static defects are recovered and hence
plan only towards detection and removal of dynamic defects
through testing activities.

9. The existence of a DI metric is an eye opener for all
stakeholders including clients and outsourcing agents to justify
and control the developmental cost. With this metric, they are
therefore in a position to substantiate the quality of the product
and the maturity level of the company dynamically from project
to project and predict a price tag for their project.

10. The DI metric brings out the variation in quality level of
functional inspection and predicted inspection. This knowl-
edge further enables the developing team to equip themselves
towards their augmentation activities in order to endure in the
competitive atmosphere of software industry.

The IPM Metric
Effectiveness of the inspection process depends on the

people who drive the process. However, there are no software
quality metrics existing to measure the performance of the
inspection team within the constraints of major inspection af-
fecting parameters, namely 1) inspection time, 2) inspection
preparation time, 3) number of inspectors, 4) experience level
of inspectors, and 5) complexity of the project that is measured
in terms of function points [2]. The IPM metric helps a software
company to make decisions toward the selection of appropriate
values to the aforementioned parameters subsequently opting
for the desirable team performance.

IPM = Ni / IE

 where T N IE ×=

 and T = It + Pt

Y = β0+β1x1+ β2x2+ β3x3+ β4x4 + β5x5 + e

Equation D:

Let Ni = Number of defects captured by inspection process
and IE = Inspection Effort

Where IE = Total number of inspectors (N) × Total amount of
inspection time (T)

Total amount of inspection time (T) = Actual inspection time
(It) + Preparation time (Pt) , (taken per person)

Where IE = Total number of inspectors (N) × Total amount of
inspection time (T)

Total amount of inspection time (T) = Actual inspection time
(It) + Preparation time (Pt)

IPM can be realized in two stages. In the first stage, number
of defects captured by the inspection team within the aforemen-
tioned parameter constraints for any particular project is found
using shop floor defect count. This mode of IPM calculation
enables the software team to measure the team performance
properties.

The second stage of realizing IPM is to predict IPM value for
a new project using a mathematical scheme. Prediction of IPM
for a project is realized using MLR models.

Let (β0 to β5) = team coefficients,
 x1 = inspection time
 x2 = preparation time
 x3= number of inspectors
 x4= experience level of inspectors
 x5 = the complexity of the project measured using function

point analysis in a logarithmic scale.

Equation E:

Thus, with the system of MLR equations, a set of team
coef¬ficients is evaluated using: Equation F.

Evaluation of β coefficients is realized using Least Square
Technique using Matlab support and requires a minimum of six
empirical projects for the evaluation purpose [7]. Let Y represent
IPM value for a project that can be obtained by substituting
the parameter values and team coefficients in equation (E) as
shown below.

Thus, with the system of MLR equations, a set of team coef-
ficients is evaluated using:

Thus, having stabilized the team coefficients, the manager can
obtain the desired IPM by appropriately tuning the inspection
influencing parameters for the given complexity of the project
[7]. Table 3 illustrates the computed IPM values for the previ-
ously sampled 15 projects.

CrossTalk—November/December 2011 25

PUBLISHER’S CHOICE
 []IPM =[]X []β + [Ε] where

[]IPM = []Parameters × []cientsTeamCoeffi + [Error Term]

Equation F:

Table 3: IPM Estimation

Observable gains of IPM are:

1. IPM is introduced as an effort analysis metric in order to
uniquely identify the effort put forth by the team for inspection.

2. The objective of introducing IPM as a quality indicator is to
indicate the level of quality being achieved by the inspection team.

3. The main purpose of IPM is to provide transparency and
visibility to the customers and thereby help them to justify and
control the developmental cost.

4. Introduction of IPM in the software development
cycle enables the inspection team to evaluate their perfor-
mance level.

5. With the implementation of IPM as a software qual-
ity metric in the inspection process, the managers of the
software company can now choose the team specification
in order to achieve desired inspection effort.

6. The goal of IPM is to provide a deep visibility to the in-
spection performance for stakeholders, clients, managers, and
outsourcing agents.

7. Existence of IPM in the software industry enables man-
agement to dynamically justify and control the staff cost to
every project based on team performance.

8. IPM further acts as an awareness metric for the inspec-
tion-performing team to be aware of the team’s performance
and to appropriately formulate strategies towards their im-
provement activities.

9. Implementation of IPM therefore acts as a metric to save
the economy of the company as it provides deep visibility of
the team’s performance in effective defect capturing abilities.

10. IPM further encourages the test team to train them-
selves for the capturing of residual defects.

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Project
hours(*)

250 263 300 507 869 1806 2110 4248 4586 4644 6944 7087 7416 8940 9220

IPM at
req.
phase

4.57 5.40 6.89 5.71 2.714 3.11 1.25 0.66 0.36 1.03 0.35 0.66 0.51 0.73 0.60

IPM at
des.
phase

0.71 0.67 1.00 1.17 0.889 0.86 0.44 0.20 0.22 1.56 0.33 0.30 0.24 0.29 0.17

IPM at
imp.
phase

0.36 0.70 0.37 0.36 0.412 0.18 0.13 0.20 0.25 0.32 0.20 0.50 0.20 0.24 0.12

Avg IPM 1.88 2.25 2.75 2.41 1.34 1.39 0.61 0.35 0.27 0.97 0.29 0.49 0.32 0.42 0.29

Tc (%) 96.0 95.0 91.5 96.0 89.8 87.0 92.0 95.4 96.5 88.3 96.9 96.5 93.1 95.8 92.3

http://www.navair.navy.mil

26 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

DI and IPM are applicable across a variety of projects with the
limitation that the ranges of values for acceptable performance
differ from one type of project to another like innovative projects,
legacy projects, etc.

Conclusion
Inspection is one of the most promising techniques of defect

management that enhances industrial productivity and qual-
ity. Inspection is a challenging task that provides a platform for
a professional inspector to exhibit his competency to detect
a maximum number of defects under time, cost, and resource
constraints. It is essential for quality managers to apply appro-
priate metrics to monitor the effectiveness of inspection and
the performance level of inspection. They can make use of two
newly introduced metrics, DI and IPM, with their desirable band
of operation to judge the level of success of process.

 The investment of implementing DI and IPM over the existing
process certainly demands a cost. However, it is inline with the
dictum, “It is not just the investment that matters for quality, but
also the right kind of investment.” The implementation of DI and
IPM is a right kind of investment that improves the position of a
company’s value to the market and stakeholders. The process
metric DI and people metric IPM could be effectively used by
clients, sponsors, and users to judge the perfection of devel-
oped, highly qualified software. Further, these metrics will pave
the way for justifying the developmental cost with deep visibility
into the process.

Due to the value of DI and IPM, the required effort to capture
a maximum amount of defects is reduced. Managers get the
added advantage of monitoring team performance, project after
project, in a convincing way using numerical estimations through
characteristic coefficients of the team or the company.

The DI and IPM value can now be either estimated based
on defect counts from the shop floor or they can be predicted

through the process coefficients and team coefficients that
were empirically evaluated using a large sample of projects.
Once the coefficients are stabilized, it is possible to predict the
achievable DI and IPM through our model, without depending
on the defect count. It implies that the managers can have the
ability to finalize the inspection influencing parameters while
planning the inspection process to achieve a particular DI. Hav-
ing finalized the IPM that a company should achieve, it can tune
the number of persons doing inspection, the experience of each
person, and the time to be spent by each person to achieve the
desired quality level of IPM.

Since DI and IPM are directly affecting defect manage-
ment, development of a 99% defect-free product is possible by
choosing appropriate values of parameters influencing DI and
IPM. In order to realize the effectiveness of DI and IPM, it is
absolutely necessary for quality-conscious outsourcing agencies
and companies to run a piloted rollout of the inspection strategy.

DI and IPM (Nair-Suma metric) are valid across a spectrum
of projects. But, it is important to note the ranges of values for
acceptable performance differs from one type of project
to another.

Acknowledgment:
The authors would like to acknowledge all the industry per-

sonnel who supported this work directly and indirectly within the
framework of nondisclosure and thank all those who supported
us to carry out the research successfully. Authors would further
like to acknowledge the CrossTalk Editorial Board and the
reviewers for their valuable suggestions.

Disclaimer:
CMMI® is registered in the U.S. Patent and Trademark Office
by Carnegie Mellon University.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
three areas of emphasis we are looking for:

Rapid and Agile Stability
May/June 2012 Issue

Submission Deadline: Dec 10, 2011

The End of the PC
July/Aug 2012 Issue

Submission Deadline: Feb 10, 2012

Resilient Cyber Ecosystem
Sept/Oct 2012 Issue

Submission Deadline: Apr 10, 2012

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

CrossTalk—November/December 2011 27

PUBLISHER’S CHOICE

CrossTalk—November/December 2011 27

Dr. T.R. Gopalakrishnan Nair was the
Vice President for Research in DS Institu-
tions, Bangalore, India and currently holds
the Saudi Aramco Endowed Chair of Tech-
nology in PMU, KSA. He worked in Indian
Space Research and Indian Industries and
has published extensively in computer field.
Dr. Nair, a senior member of IEEE and ACM,
was given the national technology award
“PARAM” in 1992. He is interested in Soft-
ware Engineering, Advanced Networking,
Real-time Systems and Bio Computing.

T.R. Gopalakrishnan Nair
Saudi Aramco Endowed
Chair - Technology
Computer Engineering and Science
Prince Mohammad Bin Fahd University
PO Box 1664, Alkhobar 31952
Phone: +966 896 4554
Fax: + 91 896 4566
E-mail: trgnair@ieee.org
E-mail: trgnair@gmail.com

Dr. V. Suma is Head-Advanced Software
Engineering Research Group of Research
and Industry Centre and Professor in
Dayananda Sagar Institutions, India. With a
Ph.D. in Computer Science and Engineering,
she is associated with several leading soft-
ware industries, universities. Being an IEEE
member, she has authored international
book chapter and several research papers
published at reputed International Journals,
National, International conferences. Her
main areas of interest are Software Engi-
neering, Database Management System
and Information Systems.

Suma. V.
Head, Advanced Software Engineering
Research Group,
Research and Industry
Incubation Center,
Professor, Department of Information
Science and Engineering
Dayananda Sagar Institutions,
Kumaraswamy Layout,
Bangalore-560078, India
Phone: +91 9448305148
Fax: +91 80 23637053
E-mail: Sumavdsce@gmail.com

ABOUT THE AUTHORS

1. Humphrey, Watts S. “The Software Quality Challenge.”CROSSTALK:
 The journal of Defense Software Engineering (June 2008).
2. Nair, Gopalakrishnan T.R., Suma V. “Impact Analysis of Inspection Process for Effective Defect Management in
 Software Development.” Software Quality Professional Journal, American Society for Quality (ASQ),
 (March 2010) 4-14.
3. Nair, Gopalakrishnan T.R., Suma V. “A Paradigm for Metric Based Inspection Process for Enhancing
 Defect Management”. ACM SIGSOFT, (May 2010).
4. Gilb, Tom. “The 10 Most Powerful Principles for Quality in Software and Software Organizations. ” CROSSTALK:
 The journal of Defense Software Engineering (November 2002).
5. Krasner, Herb. “Using the Cost of Quality Approach for Software.” CROSSTALK:
 The journal of Defense Software Engineering (March 2006).
6. Khaled El Emam. “The ROI from Software Quality.” Auerbach Publications, Edition 1, ISBN-10: 9780849332982,
 ISBN-13: 978-0849332982, (June 2005).
7. Nair, Gopalakrishnan T.R., Suma V., Nair, Nithya G. “Estimation of Characteristics of a Software Team for
 Implementing Effective Inspection Process through Inspection Performance Metric”. Software Quality
 Professional Journal, American Society for Quality (ASQ), Volume 13, Issue 2, (March 2011) 14-26.

REFERENCES

mailto:trgnair@ieee.org
mailto:trgnair@gmail.com
mailto:Sumavdsce@gmail.com

28 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

Introduction
FOSS has been widely adopted as the software of choice

in many core areas of computing. Linux dominates today in
embedded systems and in servers, and other FOSS has
gained widespread acceptance for operational use. Vibrant
communities support Linux kernel development and many
popular FOSS packages.

FOSS is all about freedom—freedom to use, study, modify, and
distribute software under an open source license. Think of the
word “free” as in free speech, not as in free beer.

The DoD has clarified1 that FOSS use is acceptable and can
provide significant benefits: high quality, reliable, and secure
software resulting from continuous and broad peer-review; avail-
ability of source code for modification, which enables rapid re-
sponse to changing situations, missions, and threats; avoidance
of vendor lock-in; freedom to use and deploy in any context; low
total cost of ownership; and so on.

Beyond the use of Linux, FOSS can be found in many do-
mains, including (to name a few) software development tools
and environments; computing infrastructure; graphics; mapping
and geospatial imaging; modeling and simulation; communica-
tions and networking; security; database; and real-time comput-
ing. Indeed, a 2003 MITRE Corporation study2 identified 115
FOSS applications in use in the DoD. Undoubtedly that number
has grown quite substantially in the years since. The DoD has
published an online Frequently Asked Questions (FAQ) page
that dispenses useful information about DoD use of FOSS.3

Abstract. Many systems developed for and deployed by the U.S.
government now use Free and Open Source Software (FOSS). But
FOSS use comes with potential license obligations. Essential compliance
activities include identification of FOSS used in products along with com-
munication of a FOSS bill of materials; review and approval of planned
FOSS use; and satisfaction of license obligations. Compliance policies,
processes, training, and tools enable contractors and government spon-
sors to use FOSS effectively. The Linux Foundation’s Open Compliance
Program provides many resources to assist with compliance.

Free and
Open Source
Software Use
Benefits and Compliance Obligations
Philip Koltun, The Linux Foundation

With FOSS use comes responsibility. Typical license obliga-
tions consist of inclusion of attributions, copyright notices,
and license text along with the product when it is distributed
externally. Providing complete and corresponding source code
or an offer of source code may also be required, depending on
the FOSS licenses involved.4

Normally, license obligations are triggered when external
distribution of a product occurs. The entity that distributes a
product containing FOSS bears the responsibility for meeting
relevant license obligations; they can not just point at an up-
stream supplier and say, “See them for whatever you are entitled
to.” On the other hand, what constitutes “external distribution”
may be subject to legal interpretation. The aforementioned FAQ
indicates that as long as a product acquired or developed by the
U.S. government is not conveyed outside the U.S. government,
external distribution has not occurred.5 As a result, use of the
software within the U.S. government context normally would not
trigger license obligations.

Why, then, should the defense software community served by
CrossTalk concern itself with FOSS compliance issues? At
least two perspectives are worth examining. First is that of the
DoD contractor delivering software to the government who uses
FOSS to implement required functionality. Second is that of the
government program manager overseeing the contractor and
assuring that the government receives the freedoms, rights, and
information to which it is entitled.

The contractor must assure that it knows what FOSS is
included in its deliverable software and that it can satisfy any
license obligations, so that the government will be able to enjoy
its freedoms. Inasmuch as a contractor may use subcontractors ,
the task of knowing what is in the delivered code can be some-
what demanding.

The government, on its side, has an interest to preserve its
options to distribute software to allies or to the public, actions
that might trigger FOSS license obligations. So the government’s
interest is to assure that software delivered to it by contrac-
tors comes with all necessary freedoms. As a result, contractual
agreements should require FOSS disclosure and FOSS obliga-
tion satisfaction from its suppliers. The government should also
investigate its suppliers’ FOSS compliance practices as part of its
background diligence in contracting. Does a supplier have a policy
on FOSS use, compliance training for its teams, automated code
scanning to facilitate discovery and recognition of FOSS inclusion,
a procedure to prepare a FOSS bill of materials, and so on? The
Linux Foundation’s “Self-Assessment Checklist” can be used
effectively to assess supplier compliance practices and engage
suppliers in discussion about compliance6. There would be good
reason, as well, to incorporate FOSS compliance discussions in
SEI assessments conducted to qualify the contractor.

FOSS Compliance
FOSS compliance refers to the aggregate of policies,

processes, training, and tools that enables an organization to
effectively use FOSS and contribute to open communities while
respecting copyrights, complying with license obligations, and
protecting the organization’s intellectual property and that of its
customers and suppliers.

CrossTalk—November/December 2011 29

PUBLISHER’S CHOICE

What business processes enable organizations to comply
with license obligations and project managers to assure obliga-
tions are satisfied? For a product being distributed externally,
compliance involves three core activities: identification of FOSS;
review and approval of planned use of FOSS; and satisfaction of
license obligations for the included FOSS. Each of these will be
discussed further below.

Identification of FOSS
First, identification of all FOSS in a product comes from the

dual processes of disclosure and discovery. With disclosure, en-
gineers and product managers of the contractor and its external
suppliers typically identify FOSS based on prior knowledge of
where the code came from. Discovery refers to audits (either
manual or automated) that are used to identify FOSS code and
its origin.

Reliance only on disclosure can be problematic. Few products
these days are written from scratch. Most evolve from legacy
products and externally acquired source code (either FOSS or
commercially licensed software), with new code being written to
implement differentiating features and functionality. Sometimes
millions of lines of code may be included in a product, some of it
pre-dating the engineers currently working for the company. It is
unlikely that any one individual or team will know all of the code
and where it came from. So it is hardly surprising that disclosure
alone would be incomplete or inaccurate. Commercial scanning
tools aid in the discovery process and are marketed by compa-
nies such as Black Duck Software, OpenLogic, Palamida, and
Protecode, among others.7 A number of open source scanning
tools are also available.8

New technologies are being developed to codify and commu-
nicate in standard format a FOSS bill of materials. For instance,
the Software Package Data Exchange specification (SPDX™),
version 1.0, was released in the fall of 2011.9

Review and Approval
Reviewing and approving planned FOSS use is the second

essential activity in compliance, typically requiring a panel
of skilled and knowledgeable individuals known as an Open
Source Review Board (OSRB). An OSRB must review FOSS
use in context, so a product architectural diagram will be needed
to show how the product’s software components (including
FOSS) interface and interact. The OSRB examines licensing
implications of the architecture, compatibility of components
from a license perspective, and resultant license obligations.
Therefore, an OSRB must incorporate the expertise of skilled
software architects and licensing experts.

Satisfaction of Obligations
The third essential activity in a compliance program concerns

satisfaction of FOSS license obligations. Many organizational
actions must come together to assure obligations can be met.
As stated earlier, obligation fulfillment typically involves inclusion
of attributions, copyright notices, and license text along with the
product when it is distributed externally. Providing complete
and corresponding source code or an offer of source code
may also be required, depending on the FOSS licenses involved.

Individuals or teams responsible for product documentation
must perform necessary tasks to assure that documentation
obligations are met.

As part of the process to satisfy source code obligations, the
contractor typically should place into a software repository the
complete source code corresponding exactly to each FOSS
package used in a given product release. The complete source
code may include any associated interface definition files, plus
the scripts used to control compilation and installation of the
executable. Verification activities should assure that source
code used to produce product binaries has been cleansed of
any inappropriate comments and that all FOSS packages in the
product have been approved by the OSRB.

Ultimately, an effective compliance program must integrate
compliance activities into day-to-day business processes so
that identification, review and approval, and obligation satisfac-
tion steps are routinely accomplished in time for scheduled
product delivery. Key elements of a compliance program include
company policy, employee training, assignment of compliance
responsibility, staffing of the compliance function, and automa-
tion to enhance efficiency and accuracy. Compliance program
implementation dovetails very nicely with CMMI®.10

Key process capabilities that must be brought to bear in com-
pliance include supplier management, software configuration
management, training, software architectural design and review,
and verification, at a minimum.

Compliance Resources
The Linux Foundation’s Open Compliance Program is the

software industry’s only neutral, comprehensive software compli-
ance initiative. By marshaling the resources of its members and
leaders in the compliance community, the Linux Foundation
brings together the individuals, companies, and legal entities
needed to expand the use of FOSS while decreasing legal costs
and reducing fear, uncertainty, and doubt.

Organizations seeking greater insight into compliance prac-
tices can take Linux Foundation compliance training courses;
download freely available Linux Foundation compliance white
papers and the Self-Assessment Checklist; participate in
the SPDX working group; participate in the FOSSBazaar com-
munity and discuss compliance best practices; and access
other helpful resources. More information can be found at
<http://www.linuxfoundation.org/programs/legal/compliance>.

Disclaimer:
CMMI® is registered in the U.S. Patent and Trademark Office
by Carnegie Mellon University.

Ultimately, an effective compliance program
must integrate compliance activities into day-
to-day business processes so that identification,
review and approval, and obligation satisfaction
steps are routinely accomplished in time for
scheduled product delivery.

http://www.linuxfoundation.org/programs/legal/compliance

30 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

Dr. Philip Koltun formerly directed the
Linux Foundation’s Open Compliance
Program. He has implemented comprehen-
sive open source compliance programs for
Motorola and NAVTEQ, including policies
and procedures, training, OSRB function,
supplier compliance, and compliance tool
introduction. Previously, he managed a
software productivity and quality center at
Harris Corporation; facilitated SEI, ISO, and
Baldrige-style assessments; managed soft-
ware suppliers; and consulted on business
process improvement. He earned a Ph.D. in
Computer Science from University of North
Carolina-Chapel Hill.

The Linux Foundation
1796 18th Street, Suite C
San Francisco, CA 94107
Phone: (815) 353-2748
Fax: (415) 723-9709
E-mail: philip.koltun@gmail.com

ABOUT THE AUTHOR

1. “Clarifying Guidance Regarding Open Source Software,” October 16, 2009, from the DoD CIO,
 <http://cio-nii.defense.gov/sites/oss/2009OSS.pdf>
2. “Use of Free and Open Source Software (FOSS) in the U.S. Department of Defense,”
 The MITRE Corporation, 2003, <http://cio-nii.defense.gov/sites/oss/2003survey/dodfoss_pdf.pdf>
3. See http://cio-nii.defense.gov/sites/oss/Open_Source_Software_(OSS)_FAQ.htm
4. The author is not a lawyer and this article should not be construed as providing legal advice. Please consult
 qualified counsel for interpretation of license terms and other questions requiring legal guidance.
5. See “DoD Open Source Software (OSS) FAQ” at <http://cio-nii.defense.gov/sites/oss/Open_Source_
 Software_(OSS)_FAQ.htm#Q:_Under_what_conditions_can_GPL-licensed_software_be_mixed_with_
 proprietary.2Fclassified_software.3F>
6. “Self-Assessment Checklist,” The Linux Foundation, November, 2010,
 <http://www.linuxfoundation.org/programs/legal/compliance/self-assessment-checklist>
7. See <http://www.blackducksoftware.com>, <http://www.openlogic.com>, <http://www.palamida.com>,
 and <http://www.protecode.com>.
8. See, for example, the FOSSology tool at <http://fossology.org> and OpenLogic’s Discovery tool,
 <http://www.openlogic.com/downloads/ossdiscovery.php>.
9. See <http://spdx.org>
10. <http://www.sei.cmu.edu/cmmi>

NOTES

Congratulations to 2011
DoD Systems Engineering
Top 5 Program Award Winners

http://www.acq.osd.mil/se

SYSTEMS ENGINEERING GOVERNMENT AND INDUSTRY TEAMS
ARMY: Army Integrated Air and Missile Defense (AIAMD)
AIAMD Project Office / Northrop Grumman Corporation
ARMY: Chinook CH-47F Multi-Year I
Program Manager Cargo / The Boeing Company
NAVY: Advanced Explosive Ordnance Disposal Robotic System (AEODRS)
Naval Surface Warfare Center, Naval EOD Technology Division /
Johns Hopkins University Applied Physics Laboratory (JHU/APL)
NAVY: CH-53K Heavy Lift Replacement Helicopter (HLR)
PMA-261 / Sikorsky Aircraft Corporation
AIR FORCE: Enterprise Business Systems
Air Force Research Laboratory / Jacobs Technology, Tybrin Group

mailto:philip.koltun@gmail.com
http://cio-nii.defense.gov/sites/oss/2009OSS.pdf
http://cio-nii.defense.gov/sites/oss/2003survey/dodfoss_pdf.pdf
http://cio-nii.defense.gov/sites/oss/Open_Source_Software_
http://cio-nii.defense.gov/sites/oss/Open_Source_Software_
http://cio-nii.defense.gov/sites/oss/Open_Source_Software_
http://www.linuxfoundation.org/programs/legal/compliance/self-assessment-checklist
http://www.blackducksoftware.com
http://www.openlogic.com
http://www.palamida.com
http://www.protecode.com
http://fossology.org
http://www.openlogic.com/downloads/ossdiscovery.php
http://spdx.org
http://www.sei.cmu.edu/cmmi
http://www.acq.osd.mil/se

CrossTalk—November/December 2011 31

PUBLISHER’S CHOICE

Deployment Optimization
for Embedded Flight
Avionics Systems

Software Defense Application
The deployment topology of a distributed system determines

how software is mapped to hardware. Optimizing the deploy-
ment topology of DoD distributed embedded systems has a
significant impact on how efficiently the software utilizes the
hardware. Deployment optimization can also help minimize costs
by increasing hardware efficiency without requiring changes to
the software or hardware architecture. This increase in hard-
ware efficiency, in turn, helps reduce fuel consumption, increase
operational ranges, and decrease cost.

Introduction
Current Trends and Challenges

Several trends are shaping the development of embedded
flight avionics systems. First, there is a migration away from
older federated computing architectures where each subsys-
tem occupied a physically separate hardware component to
integrated computing architectures where multiple software
applications implementing different capabilities share a common
set of computing platforms. Second, publish/subscribe based
messaging systems are increasingly replacing the use of hard-
coded cyclic executives.

These trends are yielding a number of benefits. For example,
integrated computing architectures create an opportunity for
system-wide optimization of deployment topologies, which map
software components and their associated tasks to hardware
processors as shown in Figure 1.1

Optimized deployment topologies can pack more software
components onto the hardware, thereby optimizing system pro-
cessor, memory, and I/O utilization [1, 2, 3]. Increasing hardware
utilization can decrease the total hardware processors that are
needed, lowering both implementation costs and maintenance
complexity. Moreover, reducing the required hardware infrastruc-
ture has other positive side effects, such as reducing weight and
power consumption.

Brian Dougherty, Vanderbilt University
Douglas C. Schmidt, Vanderbilt University
Jules White, Virginia Tech
Russell Kegley, Lockheed Martin Aeronautics
Jonathan Preston, Lockheed Martin Aeronautics

Abstract. Loosely coupled publish/subscribe messaging systems facili-
tate optimized deployment of software applications to hardware proces-
sors. Intelligent algorithms can be used to refine system deployments to
reduce system cost and resource requirements, such as memory and
processor utilization. This article describes how we applied a computer
assisted deployment optimization tool to reduce the required processors
and network bandwidth consumption of a legacy flight avionics system.

Open Problems
Developing computer-assisted methods and tools to deploy

software to hardware in embedded systems is hard [4, 5] due to
the number and complexity of constraints that must be addressed.

For example, developers must ensure that each software
component is provided with sufficient processing time to meet
any real-time scheduling constraints [6]. Likewise, resource
constraints (such as total available memory on each processor)
must also be respected when mapping software components
to hardware components [6, 7]. Moreover, assigning real-time
tasks in multi-processor and/or single-processor machines is
NP-Hard [8], which means that such a large number of potential
deployments exist that it would take years to investigate all pos-
sible solutions.

Current algorithmic deployment techniques are largely
based on heuristic bin-packing [8, 9, 10], which represents the
software tasks as items that take up a set amount of space
and hardware processors as bins that provide limited space.
Bin-packing algorithms try to place all the items into as few bins
as possible without exceeding the space provided by the bin in
which they are placed. These algorithms use a heuristic, such as
sorting the items based on size and placing them in the first bin
they fit in, to reduce the number of solutions that are considered
and to avoid exhaustive solution space exploration.

Conventional bin-packing deployment techniques take a one-
dimensional view of deployment problems by just focusing on a
single deployment concern at a time. Example concerns include
resource constraints, scheduling constraints, or fault-tolerance
constraints. In production flight avionics systems, however, deploy-
ments must meet combinations of these concerns simultaneously.

Solution Approach: Computer Assisted Deployment
Optimization

This paper describes and validates a method and tool called
ScatterD that we developed to perform computer-assisted deploy-
ment optimization for flight avionics systems. The ScatterD model-
driven engineering [11] deployment tool implements the Scatter
Deployment Algorithm, which combines heuristic bin-packing with
optimization algorithms, such as genetic algorithms [12] or particle
swarm optimization techniques [13] that use evolutionary or bird-
flocking behavior to perform blackbox optimization. This article

Figure 1. Flight Avionics Deployment Topology
(© 2010 by Vanderbilt and Lockheed Martin)

32 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

shows how flight avionics system developers have used ScatterD
to automate the reduction of processors and network bandwidth
in complex embedded system deployments.

The remainder of this article is organized as follows: Section 4
outlines a flight avionics deployment case study we use to moti-
vate the challenges and solutions throughout the paper; Section
5 describes the challenges faced by developers when attempt-
ing to optimize a representative flight avionics deployment
topology; Section 6 discusses the ScatterD tool for deployment
optimization; Section 7 provides empirical results demonstrat-
ing the reductions in hardware footprint and network bandwidth
consumption that ScatterD can produce; and Section 8 presents
concluding remarks.

Section 4:
Modern Embedded Flight Avionics Systems:
A Case Study

Over the past 20 years, flight avionics systems have become
increasingly sophisticated. Modern aircraft now depend heav-
ily on software executing atop a complex embedded network
for higher-level capabilities, such as more sophisticated flight
control and advanced mission computing functions. To accom-
modate the increased amount of software required, avionics sys-
tems have moved from older federated computing architectures
to integrated computing architectures that combine multiple
software applications together on a single computing platform
containing many software components.

The class of flight avionics system targeted by our work is a
networked parallel message-passing architecture containing
many computing nodes. At the individual node level, ARINC
653-compliant time and space partitioning separates the soft-
ware applications into sets with compatible safety and security
requirements. Inside a given time partition, the applications run
within a hard real-time deadline scheduler that executes the ap-
plications at a variety of harmonic periods.

The integrated computing architecture shown in Figure 2 has
benefits and challenges. Key benefits include better optimiza-
tion of hardware resources and increased flexibility, which result
in a smaller hardware footprint, lower energy use, decreased
weight, and enhanced ability to add new software to the aircraft
without updating the hardware. The key challenge, however, is
increased system integration complexity. In particular, while the
homogeneity of processors gives system designers a great deal
of freedom allocating software applications to computing nodes,
optimizing this allocation involves simultaneously balancing
multiple competing resource demands.

For example, even if the processor demands of a pair of
applications would allow them to share a platform, their respec-
tive I/O loads may be such that worst-case arrival rates would
saturate the network bandwidth flowing into a single node. This
problem is complicated for single-core processors used in current
integrated computing architectures. Moreover, this problem is
being exacerbated with the adoption and fielding of multi-core
processors, where competition for shared resources expands
to include internal buses, cache memory contents, and memory

access bandwidth. Artifacts complete with data describing the
computational interactions and requirements of this system were
provided by the Systems and Software Producibility Collabora-
tion and Experimentation Environment (SPRUCE) web portal
<http://www.sprucecommunity.org>. The SPRUCE web portal
allows industry partners to create challenge problems complete
with artifacts comprised of real data. These problems can then be
paired with members of the research community that maximize
the potential of discovering new, innovative solutions.

Section 5:
Deployment Optimization Challenges

This section describes the challenges facing developers when
attempting to create a deployment topology for a flight avion-
ics system. The discussion below assumes a networked parallel
message-passing architecture (such as the one described in
Section 4).

The goal is to minimize the number of processors and the
total network bandwidth resulting from communication between
software tasks.

5.1 Challenge 1: Satisfying Ratemonotonic Scheduling
Constraints Efficiently

In real-time systems, such as the embedded flight avionics
case study from Section 4, either fixed priority scheduling algo-
rithms, such as ratemonotonic scheduling, or dynamic priority
scheduling algorithms, such as earliest deadline-first, control
the execution ordering of individual tasks on the processors.
The deployment topology must ensure that the set of software
components allocated to each processor can be scheduled and
will not miss real-time deadlines. Finding a deployment topology
for a series of software components that ensures the ability to
schedule all tasks is called “multiprocessor scheduling” and is
NP-Hard [8].

A variety of algorithms, such as bin-packing algorithm varia-
tions, have been created to solve the multiprocessor scheduling
problem. A key limitation of applying these algorithms to optimize
deployments is that bin-packing does not allow developers to
specify which deployment characteristics to optimize. For example,
bin-packing does not allow developers to specify an objective
function based on the overall network bandwidth consumed by a
deployment. We describe how ScatterD ensures scheduling con-
straints are met in Section 6.1 and allows for complex objective
functions, such as network bandwidth reduction.

5.2 Challenge 2: Reducing the Complexity of Memory,
Cost, and Other Resource Constraints

Processor execution time is not the only type of resource that
must be managed while searching for a deployment topology.
Hardware nodes often have other limited but critical resources,
such as main memory or core cache, necessary for the set of
software components it supports to function. Developers must
ensure that the components deployed to a processor do not
consume more resources than are present.

If each processor does not provide a sufficient amount of

http://www.sprucecommunity.org

PUBLISHER’S CHOICE

CrossTalk—November/December 2011 33

resources to support all tasks on the processor, a task will not
execute properly, resulting in a failure. Moreover, since each
processor used by a deployment has a financial cost associ-
ated with it, developers may need to adhere to a global budget,
as well as scheduling constraints. We describe how ScatterD
ensures that resource constraints are satisfied in Section 6.2.

5.3 Challenge 3: Satisfying Complex Dynamic Network
Resource and Topology Constraints

Embedded flight avionics systems must often ensure that
not only processor resource limitations are adhered to, but also
network resources (such as bandwidth) are not over consumed.
The consumption of network resources is determined by the
number of interconnected components that are not collocated
on the same processor. For example, if two components are
collocated on the same processor, they do not consume any
network bandwidth.

Adding the consideration of network resources to deploy-
ment substantially increases the complexity of finding a
software-to-hardware deployment topology mapping that meets
requirements. The impact of the component’s deployment on
the network, however, cannot be calculated in isolation of the
other components. The impact is determined by finding all other
components that it communicates with, determining if they are
collocated, and then calculating the bandwidth consumed by the
interactions with those that are not collocated. We describe how
ScatterD helps minimize the bandwidth required by a system
deployment in Section 6.3.

Section 6:
ScatterD: A Deployment Optimization Tool to Minimize
Bandwidth and Processor Resources

Heuristic bin-packing algorithms work well for multiproces-
sor scheduling and resource allocation. As discussed in Section
5, however, heuristic bin-packing is not effective for optimizing
designs for certain system-wide properties, such as network
bandwidth consumption, and hardware/software cost. Meta-
heuristic algorithms [12, 13] are a promising approach to opti-
mize system-wide properties that are not easily optimized with
conventional bin-packing algorithms. These types of algorithms
evolve a set of potential designs over a series of iterations using
techniques, such as simulated evolution or bird flocking. At the
end of the iterations, the best solution(s) that evolved out from
the group is output as the result.

Although metaheuristic algorithms are powerful, they have
historically been hard to apply to large-scale production embed-
ded systems since they typically perform poorly on problems
that are highly constrained and have few correct solutions.
Applying simulated evolution and bird-flocking behaviors for
these types of problems tends to randomly mutate designs in
ways that violate constraints. For example, using an evolutionary
process to splice together two deployment topologies is likely to
yield a new topology that is not real-time schedulable.

Below we explain how ScatterD integrates the ability of
heuristic bin-packing algorithms to generate correct solutions to
scheduling and resource constraints with the ability of meta-
heuristic algorithms to flexibly minimize network bandwidth and
processor utilization and address the challenges in Section 5.

Figure 2. An Integrated
Computing Architecture for
Embedded Flight Avionics

34 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

6.1 Satisfying Real-time Scheduling Constraints
with ScatterD

ScatterD ensures that the numerous deployment constraints
(such as the real-time scheduling constraints described in
Challenge 1 from Section 5.1) are satisfied by using heuristic
bin-packing to allocate software tasks to processors. Conven-
tional bin-packing algorithms for multiprocessor scheduling
are designed to take as input a series of items (e.g., tasks or
software components), the set of resources consumed by each
item (e.g., processor and memory), and the set of bins (e.g., pro-
cessors) and their capacities. The algorithm outputs an assign-
ment of items to bins (e.g., a mapping of software components
to processors).

ScatterD ensures that all tasks of the flight avionics system
discussed in Section 4 can be scheduled by using response-
time analysis. The response time resulting from allocating a
software task of the avionics system to a processor is analyzed
to determine if a software component can be scheduled on a
given processor before allocating its associated item to a bin. If
the response time is fast enough to meet the real-time dead-
lines of the software task, the software task can be allocated to
the processor.

6.2 Satisfying Resource Constraints with ScatterD
To ensure that other resource constraints (such as memory

requirements described in Challenge 2 from Section 5.2) of each
software task are met, we specify a capacity for each bin that is
defined by the amount of each computational resource provided
by the corresponding processor in the avionics hardware platform.
Similarly, the resource demands of each avionics software task
define the resource consumption of each item. Before an item
can be placed in a bin, ScatterD verifies that the total consump-
tion of each resource utilized by the corresponding avionics
software component and software components already placed on
the processor does not exceed the resources provided.

6.3 Minimizing Network Bandwidth and Processor
Utilization with ScatterD

To address deployment optimization issues (such as those
raised in Challenge 3 from Section 5.3), ScatterD uses
heuristic bin-packing to ensure that all tasks can be
scheduled and resource constraints are met. If the heuristics
are not altered, bin-packing will always yield the same
solution for a given set of software tasks and processors.
The number of processors utilized and the network bandwidth
requirements will therefore not change from one execution
of the bin-packing algorithm to another. In a vast deployment
solution space associated with a large-scale flight avionics
system, however, there may be many other deployments
that substantially reduce the number of processors and net-
work bandwidth required, while also satisfying all
design constraints.

To search for avionics deployment topologies with minimal
processor and bandwidth requirements—while still ensuring
that other design constraints are met—ScatterD uses
metaheuristic algorithms to seed the bin-packing algorithm.
In particular, metaheuristic algorithms are used to search the
deployment space and select a subset of the avionics software
tasks that must be packed prior to the rest of the software
tasks. By forcing an altered bin-packing order, new deployments
with different bandwidth and processor requirements are
generated. Since bin-packing is still the driving force behind
allocating software tasks, design constraints have a higher
probability of being satisfied. By using metaheuristic algorithms
to search the design space—and then using bin-packing to
allocate software tasks to processors—ScatterD can generate
deployments that meet all design constraints while also
minimizing network bandwidth consumption and reducing
the number of required processors in the avionics platform,
as shown in Figure 3.

Figure 3. ScatterD Deployment Optimization Process

CrossTalk—November/December 2011 35

PUBLISHER’S CHOICE

Section 7:
Empirical Results

This section presents the results of configuring the ScatterD
tool to combine two metaheuristic algorithms (particle swarm
optimization and a genetic algorithm) with bin-packing to opti-
mize the deployment of the embedded flight avionics system de-
scribed in Section 4. We applied these techniques to determine
if (1) a deployment exists that increases processor utilization to
the extent that legacy processors could be removed; and (2) the
overall network bandwidth requirements of the deployment were
reduced due to collocating communicating software tasks on a
common processor.

The first experiment examined applying ScatterD to minimize
the number of processors in the legacy flight avionics system
deployment described in Section 4. This system originally
required 14 processors to support all necessary software tasks.
Applying ScatterD with particle swarm optimization techniques
and genetic algorithms resulted in increased utilization of the
processors, reducing the number of processors needed to
deploy the software of the system to eight in both cases. The
remaining six processors could then be removed from the de-
ployment without affecting system performance, resulting in the
42.8% reduction shown in Figure 4.

The ScatterD tool was also applied to minimize the bandwidth
consumed due to communication by software tasks allocated to
different processors in the legacy avionics system described in
Section 4. Reducing the bandwidth requirements of the system
leads to more efficient, faster communication while also reduc-
ing power consumption. The legacy deployment consumed
1.83 · 1008 bytes of bandwidth. Both versions of the ScatterD
tool yielded a deployment that reduced bandwidth by
4.39 · 1007 bytes or 24%, as shown in Figure 4.

While these experiments prove the effectiveness of applying
ScatterD to legacy system deployments, it is important to note
that ScatterD can also yield benefits if applied when initially
designing a new system. If the potential processor utilization and
network interactions of the software tasks that comprise the
system are known, then ScatterD can be applied to potentially
yield a deployment with reduced processor requirements and
network bandwidth consumption.

Section 8:
Concluding Remarks

Optimizing deployment topologies on legacy embedded flight
avionics systems can yield substantial benefits, such as reducing
hardware costs and power consumption. The following are a
summary of the lessons we learned applying our ScatterD tool
for deployment optimization to a legacy flight avionics system:

• Multiple constraints make deployment planning hard.
Avionics deployments must adhere to a wide range of strict
constraints, such as resource, collocation, scheduling, and net-
work bandwidth. Deployment optimization tools must account
for all these constraints when determining a new deployment.

• A huge deployment space requires intelligent search tech-
niques. The vast majority of potential deployments that could
be created violate one or more design constraints. Intelligent

and automated techniques, such as hybrid-heuristic bin-
packing, should therefore be applied to discover valid “near-
optimal” deployments.

• Substantial processor and network bandwidth reductions
are possible. Applying hybrid-heuristic bin-packing to the flight
avionics system resulted in a 42.8% processor reduction and a
24% bandwidth reduction. Our future work is applying hybrid-
heuristic bin-packing to other embedded system deployment
domains, such as automobiles, multi-core processors, and
tactical smartphone applications.

• ScatterD can be applied throughout system lifetime.
Systems may initially include expansion resources for inevi-
table system maintenance and to support new software that
becomes available during the 20 to 30 year system lifetime.
These expansion resources can be used to support new soft-
ware that is added to the system overtime. Expansion resourc-
es, however, are finite and may not be necessary for a large
portion of the system lifecycle leading to increased system
weight and cost for an underutilized architecture. Therefore it is
critical that all system resources, such as processor utilization
and network bandwidth, are minimized so that superfluous
hardware is limited. ScatterD can determine system deploy-
ments, and minimize network bandwidth consumption and
processor utilization so that additional resources are present
to support new software as it becomes available later in the
system lifecycle.

The ScatterD tool is available in open-source from the As-
cent Design Studio <http://ascent-design-studio.googlecode.
com>. A document describing the flight avionics system case
study outlined in Section 4, as well as additional information
on ScatterD, can be found at the SPRUCE web portal
<http://www.spruceommunity.org>, which pairs open industry
challenge problems with cutting-edge methods and tools from
the research community.

Figure 4. Network Bandwidth and Processor Reduction in
Optimized Deployment

http://ascent-design-studio.googlecode.com
http://ascent-design-studio.googlecode.com
http://www.spruceommunity.org

36 CrossTalk—November/December 2011

1. This work was sponsored in part by the Air Force Research Laboratory under
 FA8750-08-C-0064 & FA8750-08-1-0025.

1. L. Sha and J. Goodenough. Real-time scheduling theory and Ada. Computer,
 23(4):53–62, 1990.
2. J. Strosnider and T. Marchok. Responsive, deterministic IEEE 802.5 token ring scheduling.
 Real-Time Systems, 1(2):133–158, 1989.
3. L. Lehoczky, J.P. snf Sha and J. Strosnider. Enhancing Aperiodic Responsiveness in a
 Hard Real-Time Environment. In Proc. of the IEEE Real-Time Systems Symposium,
 pages 416–423, 1987.
4. H. Beitollahi and G. Deconinck. Fault-Tolerant Partitioning Scheduling Algorithms in
 Real-Time Multiprocessor Systems. Pacific Rim International Symposium on Dependable
 Computing, IEEE, 0:296–304, 2006.
5. A.Carzaniga,A.Fuggetta,S.Richard,D.Heimbigner, A. van der Hoek, A. Wolf, and COLORADO
 STATE UNIV FORT COLLINS DEPT OF COMPUTER SCIENCE. A Characterization
 Framework for Software Deployment Technologies. Defense Technical Information
 Center, 1998.
6. J. Stankovic. Strategic Directions in Real-time and Embedded Systems. ACM Computing
 Surveys (CSUR), 28(4):751–763, 1996.
7. W.Damm,A.Votintseva,A.Metzner,B.Josko, T. Peikenkamp, and E. Bo ̈de. Boosting Re-use
 of Embedded Automotive Applications Through Rich Components. Proceedings of
 Foundations of Interface Technologies, 2005, 2005.
8. A.Burchard,J.Liebeherr,Y.Oh,andS.Son.New Strategies for Assigning Real-time Tasks to
 Multiprocessor Systems. IEEE Transactions on Computers, 44(12):1429–1442, 1995.
9. S. Lauzac, R. Melhem, and D. Mosse. Comparison of Global and Partitioning Schemes for
 Scheduling Rate Monotonic Tasks on a Multiprocessor. In 10th Euromicro Workshop on
 Real Time Systems, pages 188–195, 1998.
10. Fault-Tolerant Rate-Monotonic First-Fit Scheduling in Hard-Real-Time Systems. IEEE
 Transactions On Parallel and Distributed Systems, pages 934–945, 1999.
11. D. C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):25–31, 2006.
12. C. Fonseca, P. Fleming, et al. Genetic algorithms for multiobjective optimization:
 Formulation, discussion and generalization. In Proceedings of the fifth international
 conference on genetic algorithms, pages 416–423. Citeseer, 1993.
13. R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization. Swarm Intelligence,
 1(1):33–57, 2007.

Brian Dougherty is a Ph.D. candidate at Vanderbilt
University. Mr. Dougherty’s research investigates automat-
ed techniques for configuring DRE systems and automati-
cally scaling cloud computing applications to meet quality
of service guarantees. He received his M.Sc. in Computer
Science from Vanderbilt University in 2009.

Brian Dougherty
Institute for Software Integrated Systems
Vanderbilt University
2015 Terrace Place
Nashville, TN 37203
E-mail: briand@dre.vanderbilt.edu

Jules White is an Assistant Professor in the Bradley
Department of Electrical and Computer Engineering at
Virginia Tech. He received his BA in Computer Science
from Brown University, his MS and Ph.D. from Vanderbilt
University. His research focuses on applying search-based
optimization techniques to the configuration of distributed,
real-time and embedded systems. In conjunction with
Siemens AG, Lockheed Martin, IBM and others, he has
developed scalable constraint and heuristic techniques for
software deployment and configuration.

Dr. Douglas C. Schmidt is a Professor of Computer
Science at Vanderbilt University. His research spans pat-
terns, optimization techniques, and empirical analyses of
software frameworks that facilitate the development of
DRE middleware and applications. Dr. Schmidt has also
led the development of ACE and TAO, which are open-
source middleware frameworks that implement patterns
and product-line architectures for high-performance
DRE systems.

Russell Kegley is a Fellow at Lockheed Martin Aero-
nautics in Fort Worth, TX, where he works in the areas
of real-time schedulability, software performance mea-
surement and optimization, distributed algorithms, and
internally-focused consulting. Some of his most rewarding
experiences at Lockheed Martin are as a career mentor
and C/C++ coach for younger engineers. He holds an MS
in computer science from Mississippi State University.

Jonathan Preston is a Fellow at Lockheed Martin
Aeronautics in Fort Worth, TX, where he works as a
research lead and system/software architect. His interest
areas include analytic methods, automated design and
analysis techniques, and distributed real-time systems.
He currently serves as a design consultant for multiple
aircraft programs and is involved with several university
and cross-corporate collaborations.

ABOUT THE AUTHORS NOTES

REFERENCES

mailto:briand@dre.vanderbilt.edu

WAR FIGHTING TECHNOLOGIES

S A V E T H E D A T E , P L A N N O W T O A T T E N D

ENHANCE ADVANCE MODERNIZE

FOR CONFERENCE & TRADE SHOW INFORMATION, VISIT WWW.SSTC-ONLINE.ORG
REGISTRATION OPENS JANUARY 2012

ACQUISITION
• Business & Information Systems
• Strategies, Policies and Standards

ARCHITECTURE
• Enterprise, Model-Driven, Open
• SOA

AGILE

CLOUD

CYBER PHYSICAL SYSTEMS
• NIST Standards
• Personal Cyber Defense
• Embedded Systems
• Run- time Operating Systems
• Integrated Systems
• Interoperability of Independent Systems

SECURITY/CYBER SECURITY
• Biometrics
• Identity Management
• Network Security
• Trusted
• Identity/Authentication
• Anti-Tamper
• Policy
• Information Assurance
• 20 Critical Controls

23-26 APRIL 2012
MARRIOTT DOWNTOWN HOTEL

SALT LAKE CITY, UTAH

24th Annual

Increasingly diverse and complex threats, coupled with decreasing budgets have provided the perfect incentive for the
software and systems communities to increase attention to working smarter, being more innovative, and becoming much
more efficient. The efficient and effective application of new and emerging technologies and methodologies is critical to
helping warfighters, and those who support them, respond to those increasing threats. A revitalized SSTC 2012 will be
an ideal forum for systems & software professionals to become smarter, gain a broader perspective of the choices and
challenges they face, and collaborate with others who face similar challenges. Whether it’s implementing cyber security,
Better Buying Power acquisition guidance, or robust yet flexible architectures, or understanding how to apply agile devel-
opment strategies or cloud computing solutions, SSTC 2012 will bring SW professionals together to discuss, learn, and
collaborate. Plan now to embrace the challenge of becoming smarter, more innovative, and efficient. Join us at SSTC
2012 … then return to work better prepared to do more without more.

38 CrossTalk—November/December 2011

UPCOMING EVENTS

Upcoming
Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

MILCOM 2011
7-10 November 2011
Baltimore, MD
<http://www.milcom.org>

GovSec West
14-16 November 2011
Phoenix, AZ
<http://govsecinfo.com/Home.aspx>

IEEE International Conference on Technologies for
Homeland Security
15-17 November 2011
Waltham, MA
<http://www.ieee-hst.org>

Software Assurance Forum Working Group Sessions -
Winter 2011
28 November - 2 December 2011
McLean, VA
<https://buildsecurityin.us-cert.gov/bsi/events.html>

Cybersecurity Conference
8-9 December 2011
Washington, DC
<http://foseinstitute.org/Home.aspx>

National Security Technology Expo
6-8 February 2012
San Diego, CA
<http://www.ubm.com>

Software Assurance Forum - Spring 2012
26-30 March 2012
McLean, VA
<https://buildsecurityin.us-cert.gov/bsi/events.html>

GovSec 2012
2-4 April 2012
Washington, DC
<http://govsecinfo.com/Home.aspx>

Systems and Software Technology Conference
23-26 April 2012
Salt Lake City, UT
<http://sstc-online.org>

http://www.crosstalkonline.org/events
http://www.milcom.org
http://govsecinfo.com/Home.aspx
http://www.ieee-hst.org
https://buildsecurityin.us-cert.gov/bsi/events.html
http://foseinstitute.org/Home.aspx
http://www.ubm.com
https://buildsecurityin.us-cert.gov/bsi/events.html
http://govsecinfo.com/Home.aspx
http://sstc-online.org

CrossTalk—November/December 2011 39

Geek
Mystique

The word geek is not new to the American vernacular. In fact,
it has been around for a century or more, but its usage seems
to be exploding. A quick web survey of websites found 15 sites
using the term “geek” within their URL. Within the same search I
found six major product lines using the word geek in the naming
of their products. There are board games, movies, clothing lines,
and categories of geeks ranging from physics and math geeks
to sports and art geeks.

It is possible for a person to read Geek Magazine, Geek
Weekly, or Fashion Geek—the Book. You can watch “Beauty and
the Geek” on television, you can buy geek wear on hats, shirts,
and coats. I have even seen the words “Geek 4 Life” tattooed on
a person’s arm, which seems to be a contradiction in lifestyles.
Remember when it used to be the bad boy with the tattoo who
picked on the poor, little, helpless, tattooless geek? The pop-
culture acceptance of geekness has now blurred all those social
categories. Face it, the term geek is far beyond cool and hip in
the 21st century.

The word itself stems from early English and German dialects
where it meant “fool.” The root still survives in Dutch and Ger-
man dialects today. The more Western European and eventual
American definition was originally used to describe circus per-
formers who performed disgusting acts and side show novelties
like biting the head off a chicken.

We are all much more familiar with the modern definition
which is “a computer expert or enthusiast.” The term has been
carried even further to now describe someone with super intel-
lect and power. As we all know, it is now very chic to be a geek.

So how did the term geek outpace other terms and transform
itself into the cool definition as it exists today? Why did other
derogatory terms such as nerd and dweeb not make the same
jump to social acceptance and then to status symbol? I will tell
you why (and this is where I insert my opinion) but, it is an opin-
ion with which I think you will agree. Geeks are cool because
of the things they do which are exhibited everyday in software.
They defend a nation. It can truthfully be said that the modern-
day safety and defense of our nation rests, at least partially, on
the shoulders of geeks. And that is one major reason why
it is cool.

My personal opinion is our defense software engineering
community is in personal possession of Super-Geeks; geeks
that can do anything given the time to build it. It does not matter
if they are computer scientists, electronic engineers, or some
other derivative or hybrid of the two. They can do anything with
software. I am completely and utterly impressed on a daily basis
by the cool things our geeks do. The way they give new life to
aging aircraft, the way they add new capabilities to previously
listless systems, and the way they provide both physical and
cyber security by the striking of a few keys on a keyboard.

I have entered the world of geekdom as a geek-geek, or in
other words, I am geeky about geeks.

Just for fun, I began asking some of my co-workers if they
considered themselves geeks, and if they welcomed the
moniker. Here are two comments I received from some self-
described geeks:

 “I have been called a geek and I felt it was
 a compliment.”

 “I like being called a geek because geeks
 have style. I do not like the term nerd, because
 I think nerds have no social skills.”

It appears there truly is a Geek Mystique and it is one of self-
confidence, intellect, hipness, and to some degree—power. The
geek shall inherit the earth, or from the looks of who is running
things these days, they may already have.

Kasey Thompson
CrossTalk Advisor

BACKTALK

CrossTalk thanks the
above organizations for
providing their support.

Exciting
and Stable
Workloads:
 �Joint Mission Planning System
 �Battle Control System-Fixed
 �Satellite Technology
 �Expeditionary Fighting Vehicle
 �F-16, F-22, F-35
 �Ground Theater Air Control
System
 �Human Engineering
Development

Employee
Benefits:
 �Health Care Packages
 �10 Paid Holidays
 �Paid Sick Leave
 �Exercise Time
 �Career Coaching
 �Tuition Assistance
 �Retirement Savings Plans
 �Leadership Training

Location,
Location,
Location:
 �25 minutes from Salt Lake City
 �Utah Jazz Basketball
 �Three Minor League Baseball
Teams
 �One Hour from 12 Ski Resorts
 �Minutes from Hunting, Fishing,
Water Skiing, ATV Trails, Hiking

Visit us at www.309SMXG.hill.af.mil. Send resumes to shanae.headley@hill.af.mil.
Also apply for our openings at USAjobs.gov

http://www.309SMXG.hill.af.mil
mailto:shanae.headley@hill.af.mil
https://buildsecurityin.us-cert.gov/swa/about.html
http://www.navair.navy.mil/
http://www.acq.osd.mil/se/
http://www.mas.hill.af.mil/

	Front Cover
	Table of Contents
	From the Publisher
	Netcentric Proxies for On-Orbit Sensors
	Give the Stakeholders What They Want: Design Peer Reviews the ATAM Style
	Software Architecture: Theory and Practice
	Utilizing Design of Experiments to Reduce IT System Testing Cost
	Defect Management Using Depth of Inspection and the Inspection Performance Metric
	Free and Open Source Software Use: Benefits and Compliance Obligations
	Deployment Optimization for Embedded Flight Avionics Systems
	Upcoming Events
	Geek Mystique
	Back Cover

